Skip to main content

Numerical Modeling of the Charge Transfer Along 1D Molecular Chain “Donor-Bridge-Acceptor” at T = 300 K

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11386))

Abstract

We consider charge transfer along homogeneous chain of sites (such as DNA fragment) with the ends which imitate a donor and an acceptor. We performed direct numerical experiments based on the semi-classical Holstein model. To take into account the temperature, Langevin thermostat is used. Recently it has been shown that in homogeneous chains the charge distribution in thermodynamic equilibrium state (TDE) depends on the thermal energy of the lattice subsystem. Here, we have calculated dynamics of the system from the initial state “the charge is localized at the donor” over time intervals to the attainment of the TDE. The time intervals dependence on the length of the chain at fixed temperature is estimated. Part of parameter values are chosen as for DNA fragments of the GA...AGGG type. The results of the calculations are compared with the data of biophysical experiments on the hole transfer in DNA sequences.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lakhno, V.: DNA nanobioelectronics. Int. J. Quantum Chem. 108(11), 1970–1981 (2008)

    Article  Google Scholar 

  2. Offenhousser, A., Rinaldi, R. (eds.): Nanobioelectronics - for Electronics, Biology, and Medicine. Springer, New York (2009). https://doi.org/10.1007/978-0-387-09459-5

    Book  Google Scholar 

  3. Demple, B., Harrison, L.: Repair of oxidative damage to DNA: enzymology and biology. Annu. Rev. Biochem. 63, 915–948 (1994)

    Article  Google Scholar 

  4. Loft, S., Poulsen, H.: Cancer risk and oxidative DNA damage in man. J. Mol. Med. 74(6), 297–312 (1996)

    Article  Google Scholar 

  5. Meggers, E., Michel-Beyerle, M., Giese, B.: Sequence dependent long range hole transport in DNA. J. Am. Chem. Soc. 120(49), 12950–12955 (1998)

    Article  Google Scholar 

  6. Giese, B., Wessely, S., Spormann, M., Lindemann, U., Meggers, E., Michel-Beyerle, M.: On the mechanism of long-range electron transfer through DNA. Angew. Chem. Int. Ed. Engl. 38(7), 996–998 (1999)

    Article  Google Scholar 

  7. Giese, B., Amaudrut, J., Kohler, A.-K., Spormann, M., Wessely, S.: Direct observation of hole transfer through DNA by hopping between adenine bases and by tunnelling. Nature 412, 318–320 (2001). https://doi.org/10.1038/35085542

    Article  Google Scholar 

  8. Grozema, F., Berlin, Y., Siebbeles, L.: Mechanism of charge migration through DNA: molecular wire behavior, single-step tunneling or hopping? J. Am. Chem. Soc. 122(44), 10903–10909 (2000)

    Article  Google Scholar 

  9. Henderson, P., Jones, D., Hampikian, G., Kan, Y., Schuster, G.: Long-distance charge transport in duplex DNA: the phonon-assisted polaron-like hopping mechanism. PNAS USA 96, 8353–8358 (1999)

    Article  Google Scholar 

  10. Lakhno, V., Fialko, N.: Hole mobility in a homogeneous nucleotide chain. JETP Lett. 78(5), 336–338 (2003)

    Article  Google Scholar 

  11. Fialko, N., Sobolev, E., Lakhno, V.: On the calculation of thermodynamic quantities in the Holstein model for homogeneous polynucleotides. JETP 124(4), 635–642 (2017)

    Article  Google Scholar 

  12. Fialko, N., Pyatkov, M., Lakhno, V.: On the thermodynamic equilibrium distribution of a charge in a homogeneous chain with a defect. In: Adam, G., Busa, J., Hnatic M., Podgainy D. (eds.) Mathematical Modeling and Computational Physics 2017 (MMCP 2017). EPJ Web of Conferences, vol. 173, p. 06004-4 (2018)

    Google Scholar 

  13. Holstein, T.: Studies of polaron motion: Part I. The molecular-crystal model. Ann. Phys. 8(3), 325–342 (1959)

    Article  Google Scholar 

  14. Lomdahl, P., Kerr, W.: Do Davydov solitons exist at 300K? Phys. Rev. Lett. 55(11), 1235–1238 (1985)

    Article  Google Scholar 

  15. Helfand, E.: Brownian dynamics study of transitions in a polymer chain of bistable oscillators. J. Chem. Phys. 69(3), 1010–1018 (1978)

    Article  Google Scholar 

  16. Greenside, H., Helfand, E.: Numerical integration of stochastic differential equations - II. Bell System Tech. J. 60(8), 1927–1940 (1981)

    Article  Google Scholar 

  17. Seidel, C., Schulz, A., Sauer, M.: Nucleobase-specific quenching of fluorescent dyes. 1. Nucleobase one-electron redox potentials and their correlation with static and dynamic quenching efficiencies. J. Phys. Chem. 100(13), 5541–5553 (1996)

    Article  Google Scholar 

  18. Lewis, F., Wu, Y.: Dynamics of superexchange photoinduced electron transfer in duplex DNA. J. Photochem. Photobiol. C 2(1), 1–16 (2001)

    Article  Google Scholar 

  19. Voityuk, A., Rosch, N., Bixon, M., Jortner, J.: Electronic coupling for charge transfer and transport in DNA. J. Phys. Chem. B 104(41), 9740–9745 (2000)

    Article  Google Scholar 

  20. Jortner, J., Bixon, M., Voityuk, A., Roesh, N.: Superexchange mediated charge hopping in DNA. J. Phys. Chem. A 106(33), 7599–7606 (2002)

    Article  Google Scholar 

  21. Frenkel, D., Smit, B.: Understanding Molecular Simulation: From Algorithms to Applications. Academic Press, London (2001)

    MATH  Google Scholar 

Download references

Acknowledgements

The work is partially supported by Russian Foundation for Basic Research, grants 16-07-00305 and 17-07-00801, and Russian Science Foundation, grant 16-11-10163.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadezhda Fialko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fialko, N., Lakhno, V.D. (2019). Numerical Modeling of the Charge Transfer Along 1D Molecular Chain “Donor-Bridge-Acceptor” at T = 300 K. In: Dimov, I., Faragó, I., Vulkov, L. (eds) Finite Difference Methods. Theory and Applications. FDM 2018. Lecture Notes in Computer Science(), vol 11386. Springer, Cham. https://doi.org/10.1007/978-3-030-11539-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11539-5_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11538-8

  • Online ISBN: 978-3-030-11539-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics