Skip to main content

Feasibility of Advance Technologies

  • Chapter
  • First Online:

Abstract

Many of the traditional food preservation techniques offer an effective solution to food waste. However, there are many challenges that can be solved easily with the incorporation of modern technology. With the advancement of technology and better understanding, food preservation techniques are being changed day by day. Incorporation of feasible innovative technique can solve the challenges and enhance the overall performance of food preservation technology in developing countries. Although modern techniques offer enormous advantages, prior viability analysis must be conducted prior to incorporation in developing countries instead of traditional ones. Different constraints such as financial, technological, and environmental need to consider preceding of changing and modifying traditional food preservation technique. Therefore, the optimization of advanced technology must be analyzed before implementing modern technology in food preservation in developing countries. In this chapter, the feasibility of some potential advanced technologies in connection with food preservation has been discussed in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Yaldiz O, Ertekin C, Uzun HI (2001) Mathematical modeling of thin layer solar drying of sultana grapes. Energy 26(5):457–465

    Article  Google Scholar 

  2. Bala BK, Woods JL (1995) Optimization of natural-convection, solar drying systems. Energy 20(4):285–294

    Article  Google Scholar 

  3. Bala BK (1998) Solar drying systems: simulations and optimization. Agrotech Publishing Academy, Udaipur

    Google Scholar 

  4. Kalogirou SA (2004) Optimization of solar systems using artificial neural-networks and genetic algorithms. Appl Energy 77(4):383–405

    Article  Google Scholar 

  5. Hardenburg RE, Watada AE, Wang CY (1986) The commercial storage of fruits, vegetables, and florist and nursery stocks, vol 66. U.S. Department of Agriculture, Agricultural Research Service, Washington, DC

    Google Scholar 

  6. Bal LM, Satya S, Naik SN (2010) Solar dryer with thermal energy storage systems for drying agricultural food products: a review. Renew Sust Energ Rev 14(8):2298–2314

    Article  Google Scholar 

  7. Sharma A, Tyagi VV, Chen CR, Buddhi D (2009) Review on thermal energy storage with phase change materials and applications. Renew Sust Energ Rev 13(2):318–345

    Article  CAS  Google Scholar 

  8. Turner IW, Jolly PC (1991) Combined microwave and convective drying of a porous material. Dry Technol 9(5):1209–1269

    Article  Google Scholar 

  9. Kumar C (2015) Modelling intermittent microwave convective drying (IMCD) of food materials (Doctoral dissertation, Queensland University of Technology), Brisbane, Australia

    Google Scholar 

  10. Zhang M, Jiang H, Lim R-X (2010) Recent developments in microwave-assisted drying of vegetables, fruits, and aquatic products—drying kinetics and quality considerations. Dry Technol 28(11):1307–1316

    Article  CAS  Google Scholar 

  11. Kowalski SJ, Pawlowski A (2011) Intermittent drying: energy expenditure and product quality. Chem Eng Technol 34(7):1123–1129

    Article  CAS  Google Scholar 

  12. Ramallo LA, Lovera NN, Schmalko ME (2010) Effect of the application of intermittent drying on Ilex paraguariensis quality and drying kinetics. J Food Eng 97(2):188–193

    Article  Google Scholar 

  13. Pan YK, Zhao LJ, Hu WB (1998) The effect of tempering-intermittent drying on quality and energy of plant materials. Dry Technol 17(9):1795–1812

    Article  Google Scholar 

  14. Kudra T, Mujumdar AS (2009) Advanced drying technologies. CRC Press, Boca Raton

    Book  Google Scholar 

  15. Kowalski SJ, Pawłowski A (2011) Energy consumption and quality aspect by intermittent drying. Chem Eng Process Process Intensif 50(4):384–390

    Article  CAS  Google Scholar 

  16. Chin SK, Law CL (2010) Product quality and drying characteristics of intermittent heat pump drying of Ganoderma tsugae Murrill. Dry Technol 28(12):1457–1465

    Article  CAS  Google Scholar 

  17. Wang J, Wang JS, Yu Y (2007) Microwave drying characteristics and dried quality of pumpkin. Int J Food Sci Technol 42(2):148–156

    Article  CAS  Google Scholar 

  18. Esturk O (2012) Intermittent and continuous microwave-convective air-drying characteristics of Sage (Salvia officinalis) Leaves. Food Bioprocess Technol 5(5):1664–1673

    Article  Google Scholar 

  19. Esturk O, Arslan M, Soysal Y, Uremis I, Ayhan Z (2011) Drying of sage (Salvia officinalis L.) inflorescences by intermittent and continuous microwave-convective air combination. Res Crop 12(2):607–615

    Google Scholar 

  20. Ahrné LM, Pereira NR, Staack N, Floberg P (2007) Microwave convective drying of plant foods at constant and variable microwave power. Dry Technol 25(7–8):1149–1153

    Article  Google Scholar 

  21. Soysal Y, Arslan M, Keskin M (2009) Intermittent microwave-convective air drying of oregano. Food Sci Technol Int 15(4):397–406

    Article  Google Scholar 

  22. Botha GE, Oliveira JC, Ahrné L (2012) Microwave assisted air drying of osmotically treated pineapple with variable power programmes. J Food Eng 108(2):304–311

    Article  Google Scholar 

  23. Orsat V, Yang W, Changrue V, Raghavan GSV (2007) Microwave-assisted drying of biomaterials. Food Bioprod Process 85(3):255–263

    Article  Google Scholar 

  24. Soysal Y, Ayhan Z, Eştürk O, Arıkan MF (2009) Intermittent microwave–convective drying of red pepper: drying kinetics, physical (colour and texture) and sensory quality. Biosyst Eng 103(4):455–463

    Article  Google Scholar 

  25. Kumar C, Joardder MUH, Karim A, Millar GJ, Amin Z (2014) Temperature redistribution modelling during intermittent microwave convective heating. Procedia Eng 90:544–549

    Article  Google Scholar 

  26. Soysal Y (2009) Intermittent and continuous microwave-convective air drying of potato (Lady rosetta): drying kinetics, energy consumption, and product quality. J Agric Mach Sci 5(2):139–148

    Google Scholar 

  27. Junqueira JR de J, Corrêa JLG, Ernesto DB (2017) Microwave, convective, and intermittent microwave–convective drying of pulsed vacuum osmodehydrated pumpkin slices. J Food Process Preserv 41(6):1–8

    Article  Google Scholar 

  28. Kesbi OM, Sadeghi M, Mireei SA (2016) Quality assessment and modeling of microwave-convective drying of lemon slices. Eng Agric Environ Food 9(3):216–223

    Article  Google Scholar 

  29. Donnell M (2009) Definition of health promotion. Am J Health Promot 24(1):iv. Health Promotion. Am J. Rad Phys Chem 63: 211–215

    Google Scholar 

  30. Licciardello JJ, Ronsivalli LJ (1982) Irradiation of seafoods. In: Martin RE, Flick GJ, Hebard CE, Ward DR (eds) Chemistry and biochemistry of marine food products. AVI Publishing Company, Westport

    Google Scholar 

  31. Moseley B (1990) Irradiation of food. Food Control 1(4):205–206

    Article  Google Scholar 

  32. Janowicz M, Lenart A (2018) The impact of high pressure and drying processing on internal structure and quality of fruit. Eur Food Res Technol 244:1–12

    Article  Google Scholar 

  33. Singh P, Wani AA, Saengerlaub S, Langowski H-C (2011) Understanding critical factors for the quality and shelf-life of MAP fresh meat: a review. Crit Rev Food Sci Nutr 51(2):146–177

    Article  PubMed  Google Scholar 

  34. Church N (1994) Developments in modified-atmosphere packaging and related technologies. Trends Food Sci Technol 5(11):345–352

    Article  CAS  Google Scholar 

  35. Kader AA, Watkins CB (2000) Modified atmosphere packaging—toward 2000 and beyond. HortTechnology 10(3):483–486

    Article  Google Scholar 

  36. Charles F, Sanchez J, Gontard N (2003) Active modified atmosphere packaging of fresh fruits and vegetables: modeling with tomatoes and oxygen absorber. J Food Sci 68(5):1736–1742

    Article  CAS  Google Scholar 

  37. Farber JN et al (2003) Microbiological safety of controlled and modified atmosphere packaging of fresh and fresh-cut produce. Compr Rev Food Sci Food Saf 2:142–160

    Article  Google Scholar 

  38. Sandhya (2010) Modified atmosphere packaging of fresh produce: current status and future needs. LWT-Food Sci Technol 43(3):381–392

    Article  CAS  Google Scholar 

  39. Varoquaux P, Gouble B, Barron C, Yildiz F (1999) Respiratory parameters and sugar catabolism of mushroom (Agaricus bisporus Lange). Postharvest Biol Technol 16(1):51–61

    Article  CAS  Google Scholar 

  40. López-Rubira V, Conesa A, Allende A, Artés F (2005) Shelf life and overall quality of minimally processed pomegranate arils modified atmosphere packaged and treated with UV-C. Postharvest Biol Technol 37(2):174–185

    Article  Google Scholar 

  41. Burton KS, Frost CE, Nichols R (1987) A combination plastic permeable film system for controlling post-harvest mushroom quality. Biotechnol Lett 9(8):529–534

    Article  Google Scholar 

  42. Artés F (1993) Diseño y cálculo de polímeros sintéticos de interés para la conservación hortofrutícola en atmósfera modificada Nuevo Curso de Ingeniería del Frío, 2ª Edic, Revista Iberoamericana de Tecnología Postcosecha, enero, año/vol. 7, número 002 Asociación Iberoamericana de Tecnología Postcosecha, S.C. Hermosillo, México, pp 427–453

    Google Scholar 

  43. Sivertsvik M, Rosnes JT, Bergslien H (2002) Modified atmosphere packaging. In: Minimal processing technologies in the food industry. CRC Press, New York, pp 61–80

    Chapter  Google Scholar 

  44. Thompson AK (2010) Modified atmosphere packaging. In: Controlled atmosphere storage of fruits and vegetables, 2nd edn. CABI, Wallingford, pp 81–115

    Chapter  Google Scholar 

  45. Sebranek JG, Houser TA (2017) Modified atmosphere packaging. In: Advanced technologies for meat processing. CRC Press, Boca Raton, pp 615–646

    Google Scholar 

  46. Badgujar CD, Lawande KE, Kale PN (1987) Polythene packaging for increasing shelf life in brinjal fruits. Current Research Reporter Mahatma Phule Agril Univ 3:2–22

    Google Scholar 

  47. Nasrin TAA, Molla MM, Hossaen MA, Alam MS, Yasmin L (2008) Effect of postharvest treatments on shelf life and quality of tomato. Bangladesh J Agric Res 33(4):579–585

    Article  Google Scholar 

  48. Chandrapala J, Oliver C, Kentish S, Ashokkumar M (2012) Ultrasonics in food processing. Ultrason Sonochem 19(5):975–983

    Article  CAS  PubMed  Google Scholar 

  49. Paniwnyk L (2017) Applications of ultrasound in processing of liquid foods: a review. Ultrason Sonochem 38:794–806

    Article  CAS  PubMed  Google Scholar 

  50. Awad TS, Moharram HA, Shaltout OE, Asker D, Youssef MM (2012) Applications of ultrasound in analysis, processing and quality control of food: a review. Food Res Int 48(2):410–427

    Article  CAS  Google Scholar 

  51. Chemat F, E-Huma Z, Khan MK (2011) Applications of ultrasound in food technology: processing, preservation, and extraction. Ultrason Sonochem 18(4):813–835

    Article  CAS  PubMed  Google Scholar 

  52. Režek A, Mason TJ, Paniwnyk L, Lelas V (2006) Accelerated drying of mushrooms, brussels sprouts, and cauliflower by means of power ultrasound and its impact on food quality. In: 10th Meeting of the European Society of Sonochemistry, Hamburg, Germany

    Google Scholar 

  53. Jambrak AR, Mason TJ, Paniwnyk L, Lelas V (2007) Accelerated drying of button mushrooms, Brussels sprouts and cauliflower by applying power ultrasound and its rehydration properties. J Food Eng 81(1):88–97

    Article  Google Scholar 

  54. Povey MJW, Mason TJ (1998) Ultrasound in food processing. Springer Science & Business Media, Berlin, Germany

    Google Scholar 

  55. Zheng L, Sun D-W (2006) Innovative applications of power ultrasound during food freezing processes—a review. Trends Food Sci Technol 17(1):16–23

    Article  CAS  Google Scholar 

  56. Soria AC, Villamiel M (2010) Effect of ultrasound on the technological properties and bioactivity of food: a review. Trends Food Sci Technol 21(7):323–331

    Article  CAS  Google Scholar 

  57. McClements DJ (1995) Advances in the application of ultrasound in food analysis and processing. Trends Food Sci Technol 6(9):293–299

    Article  CAS  Google Scholar 

  58. Mason TJ, Paniwnyk L, Lorimer JP (1996) The uses of ultrasound in food technology. Ultrason Sonochem 3(3):S253–S260

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Joardder, M.U.H., Masud, M.H. (2019). Feasibility of Advance Technologies. In: Food Preservation in Developing Countries: Challenges and Solutions. Springer, Cham. https://doi.org/10.1007/978-3-030-11530-2_9

Download citation

Publish with us

Policies and ethics