Skip to main content

Fault-Tolerant Additive Weighted Geometric Spanners

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11394))

Abstract

Let S be a set of n points and let w be a function that assigns non-negative weights to points in S. The additive weighted distance \(d_w(p, q)\) between two points \(p,q \in S\) is defined as \(w(p) + d(p, q) + w(q)\) if \(p \ne q\) and it is zero if \(p = q\). Here, d(pq) is the (geodesic) Euclidean distance between p and q. For a real number \(t > 1\), a graph G(SE) is called a t-spanner for the weighted set S of points if for any two points p and q in S the distance between p and q in graph G is at most t.\(d_w(p, q)\) for a real number \(t > 1\). For some integer \(k \ge 1\), a t-spanner G for the set S is a (k, t)-vertex fault-tolerant additive weighted spanner, denoted with (kt)-VFTAWS, if for any set \(S' \subset S\) with cardinality at most k, the graph \(G \setminus S'\) is a t-spanner for the points in \(S \setminus S'\). For any given real number \(\epsilon > 0\), we present algorithms to compute a \((k, 4+\epsilon )\)-VFTAWS for the metric space \((S, d_w)\) resulting from the points in S belonging to either \(\mathbb {R}^d\) or located in the given simple polygon. Note that d(pq) is the geodesic Euclidean distance between p and q in the case of simple polygons whereas in the case of \(\mathbb {R}^d\) it is the Euclidean distance along the line segment joining p and q.

R. Inkulu—This research is supported in part by NBHM grant 248(17)2014-R&D-II/1049.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abam, M.A., Adeli, M., Homapour, H., Asadollahpoor, P.Z.: Geometric spanners for points inside a polygonal domain. In: Proceedings of Symposium on Computational Geometry, pp. 186–197 (2015)

    Google Scholar 

  2. Abam, M.A., de Berg, M., Farshi, M., Gudmundsson, J., Smid, M.H.M.: Geometric spanners for weighted point sets. Algorithmica 61(1), 207–225 (2011)

    Article  MathSciNet  Google Scholar 

  3. Abam, M.A., de Berg, M., Seraji, M.J.R.: Geodesic spanners for points on a polyhedral terrain. In: Proceedings of Symposium on Discrete Algorithms, pp. 2434–2442 (2017)

    Google Scholar 

  4. Althöfer, I., Das, G., Dobkins, D., Joseph, D., Soares, J.: On sparse spanners of weighted graphs. Discret. Comput. Geom. 9(1), 81–100 (1993)

    Article  MathSciNet  Google Scholar 

  5. Bose, P., Carmi, P., Couture, M.: Spanners of additively weighted point sets. In: Proceedings of Scandinavian Workshop on Algorithm Theory, pp. 367–377 (2008)

    Google Scholar 

  6. Czumaj, A., Zhao, H.: Fault-tolerant geometric spanners. Discret. Comput. Geom. 32(2), 207–230 (2004)

    Article  MathSciNet  Google Scholar 

  7. Har-Peled, S.: Geometric Approximation Algorithms. American Mathematical Society, Providence (2011)

    Book  Google Scholar 

  8. Har-Peled, S., Mendel, M.: Fast construction of nets in low-dimensional metrics and their applications. SIAM J. Comput. 35(5), 1148–1184 (2006)

    Article  MathSciNet  Google Scholar 

  9. Levcopoulos, C., Narasimhan, G., Smid, M.H.M.: Improved algorithms for constructing fault-tolerant spanners. Algorithmica 32(1), 144–156 (2002)

    Article  MathSciNet  Google Scholar 

  10. Lukovszki, T.: New results of fault tolerant geometric spanners. In: Proceedings of Workshop on Algorithms and Data Structures, pp. 193–204 (1999)

    Google Scholar 

  11. Narasimhan, G., Smid, M.H.M.: Geometric Spanner Networks. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  12. Solomon, S.: From hierarchical partitions to hierarchical covers: optimal fault-tolerant spanners for doubling metrics. In: Proceedings of Symposium on Theory of Computing, pp. 363–372 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Inkulu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhattacharjee, S., Inkulu, R. (2019). Fault-Tolerant Additive Weighted Geometric Spanners. In: Pal, S., Vijayakumar, A. (eds) Algorithms and Discrete Applied Mathematics. CALDAM 2019. Lecture Notes in Computer Science(), vol 11394. Springer, Cham. https://doi.org/10.1007/978-3-030-11509-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11509-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11508-1

  • Online ISBN: 978-3-030-11509-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics