Skip to main content

Anholonomity in Pre-and Relativistic Geodesy

  • Chapter
  • First Online:
Relativistic Geodesy

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 196))

  • 981 Accesses

Abstract

I was invited to speak about anholonomity or the problem to find coordinate reference systems which are differentiable. In general non-differentiable functions like (pseudo) orthonormal reference systems are differentiable forms being not classical functions. These differentiable forms are the basis of Elie Cartan’s “exterior calculus”. Geodetic examples are extensively reviewed in the context of the pre-and relativistic Geodesy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.D. Zund, Foundations of Differential Geodesy (Springer, Berlin, 1994)

    Book  Google Scholar 

  2. P.J.G. Teunissen, Anholonomity when using the development method for the reduction of observations to the reference ellipsoid. Bull. Geod. 56, 356–363 (1982)

    Article  Google Scholar 

  3. M. Blagojevic, F.W. Hehl, J. Garecki, Y.N. Obukhov, Real null coframes in general relativity and GPS coordinates. Phys. Rev. 65(4), 044018 (2002)

    ADS  MathSciNet  Google Scholar 

  4. E.W. Grafarend, F.W. Krumm, Map Projections: Cartographic Infromation Systems (Springer, Berlin, 2006)

    MATH  Google Scholar 

  5. E.W. Grafarend, W. Kuehnel, A minimum atlas for the rotation group SO(3). J. Geomath. 2(2011), 113–122 (2011)

    Article  Google Scholar 

  6. E.W. Grafarend, A.A. Ardalan, Ellipsoidal geoidal undulations (ellipsoidal Bruns formula): case study. J. Geod. 75, 544–552 (2001)

    Article  ADS  Google Scholar 

  7. F. Sanso, P. Vanicek, The orthometric height and the holonomity problem. J. Geod. 80, 225–232 (2006)

    Article  ADS  Google Scholar 

  8. J.A. Schouten, Ricci-Calculus, 2nd edn. (Springer, Heidelberg, 1954), p. 127

    Book  Google Scholar 

  9. R. Cushmann, H. Duistermaat, J. Sniatycki, Geometry of Nonholonomically Constrained Systems (World Scientific, Singapore, 2010), p. 404

    MATH  Google Scholar 

  10. S. Sternberg, Curvature in Mathematical and Physics (Dover Publication, Mineola, 2012)

    MATH  Google Scholar 

  11. F. Hehl, Der Spin und Torsion in der Allgemeinen Relativitätstheorie. Abh. Braunschweigische Wiss. Ges. 18, 98 (1966)

    Google Scholar 

  12. F. Hehl, Der Spin und Torsion in der Allgemeinen Relativitätstheorie. Universität Clausthal, Habilitationsschrift Techn (1970)

    Google Scholar 

  13. F. Heh, E. Kröner, Über den Spin in der Allgemeinen Relativitätstheorie. Z. Phys. 187, 478 (1965)

    Article  ADS  Google Scholar 

  14. A. Marussi, Fondements de geometrie differentielle absolue du champ potential terrestre. Bull. Geod. 14, 411–439 (1949)

    Article  MathSciNet  Google Scholar 

  15. E.W. Grafarend, Three dimensional geodesy I: the holonomity problem. Z. Vermesssungswesen 100, 269–281 (1975)

    MATH  Google Scholar 

  16. P. Defrise, E.W. Grafarend, Torsion and anholonomity of geodetic frames. Bollettino di Geodesia e Scienze Affini 35, 153–160 (1976)

    Google Scholar 

  17. M. Caputo, The Gravity Field of the Earth (Academic, New York, 1967)

    Google Scholar 

  18. A. Marussi, Natural reference systems and their reciprocals in geodesy, Technical report, Publ. T.J, Kukkamaki 70th Birthday, Publ. Finnish Geodetic Institute, Nr. 89, Helsinki (1979)

    Google Scholar 

  19. A. Marussi, Intrinsic Geodesy (trans: Reilly WI) (Springer, Berlin, 1985)

    Book  Google Scholar 

  20. M. Hotine, in Differential Geodesy (Edited with commentary by J. D. Zund) (Springer, Berlin, 1991)

    Google Scholar 

  21. H. Moritz, The Hamiltonian structure of refraction and the gravity field. Manuscripta Geod. 20, 52–60 (1994)

    Google Scholar 

  22. H. Goenner, E.W. Grafarend, R.J. You, Newton mechanics as geodesic flow on maupertuis’ manifold; the local isometric embedding into flat spaces. Manuscripta Geod. 19, 339–345 (1994)

    Google Scholar 

  23. E.W. Grafarend, Differential geometry of the gravity field. Manuscripta Geod. 11, 29–37 (1986)

    ADS  MATH  Google Scholar 

  24. E. Hunziker, Lotlinienkrünunung und Projektion eines Punktes oder einer Strecke auf das Geoid, Schweiz. Z Vermessung. Kulturtechnik und Photogrammetrie 58, 144–152 (1960)

    Google Scholar 

  25. J. Engels, E. Grafarend, The gravitational field of topographic/isostatic masses and the hypothesis of mass condensation. Surv. Geophys. 140, 495–524 (1993)

    Google Scholar 

  26. J. Engels, E. Grafarend, P. Sorcik, The gravitational field of topographic-isostatic masses and the hypothesis of mass condensation II - the topographic-isostatic Geoid. Sun Geophys. 17, 41–66 (1996)

    Article  ADS  Google Scholar 

  27. E.W. Grafarend, J. Engels, P. Sorcik, The gravitational field of topographic/isostatic masses and the hypothesis of mass condensation. Part I and II, Technical report, Department of Geodesy, Stuttgart (1995)

    Google Scholar 

  28. N. Grossman, Holonomic measurables in geodesy. J. Geophys. Res. 79, 689–694 (1974)

    Article  ADS  Google Scholar 

  29. N. Grossman, The pull-back operation in physical geodesy and the behaviour of plumblines. Manuscripta Geod. 3, 55–105 (1978)

    MATH  Google Scholar 

  30. I.I. Mueller, E. Grafarend, H.B. Papo, B. Richter, Investigations on the hierarchy of reference frames in geodesy and geodynamic, Technical Report 289, Department of Geodetic Science, The Ohio State University (1979)

    Google Scholar 

  31. I.I. Mueller, E. Grafarend, H.B. Papo, B. Richter, Concepts for reference frames in geodesy and geodynamics: the reference directions. Bull. Geod. 53(289), 195–213 (1979)

    MathSciNet  Google Scholar 

  32. E.W. Grafarend, Spacetime geodesy. Boll, di Geodesia e Scienze Affini 38, 551–589 (1975)

    Google Scholar 

  33. E.W. Grafarend, Die Beobachtungsgleichungen der dreidimen-sionalen Geodasie im Geometrie- and Schwereraum, ein Beitrag zur operationellen Geodasie. Zeitschrift für Vermessungswesen 106, 411–429 (1981)

    Google Scholar 

  34. M. Fujimoto, E. Grafarend, Spacetime coordinates in the geodetic reference frame. in Relativity in Celestial Mechanics and Astronomy, ed. by J. Kovalevsky, V.A. Brumberg (IAU, 1986), pp. 269–276

    Google Scholar 

  35. R. Penrose, W. Rindler, Spinors and Space-Time, vol. 1 (Cambridge University Press, Cambridge, 1987)

    MATH  Google Scholar 

  36. A. Marussi, Les principes de la geodesie intrinseque. Bull. Geod. 19, 68–76 (1951)

    Article  MathSciNet  Google Scholar 

  37. A. Marussi, Fondamenti di geodesia intrinseca. Publicazioni della Commissione Geodetica Italiana, Ser. HI 7, 1–47 (1951)

    Google Scholar 

  38. A. Marussi, Su alcune propriety integrali delle rappresen-tazioni conformi di superfici su superfici, rendiconti della classe di scienze fisiche, matematiche e naturali. Accademia Nazionale dei Lincei (Roma), Ser. VIII 10, 307–310 (1951)

    MathSciNet  MATH  Google Scholar 

  39. A. Marussi, La coordination des system geodesiques. Bull. Geod. 43, 16–19 (1957)

    Article  MathSciNet  Google Scholar 

  40. A. Marussi, Dalla geodesia classica alla geodesia in tre dimensioni. Bollettini di Geodesia e Scienze Affini, anno XVIII, 485–495 (1959)

    Google Scholar 

  41. A. Marussi, The tidal field of a planet and the related intrinsic reference systems. Geophys. J. R. Astron. Soc. 56, 409–417 (1979)

    Article  ADS  Google Scholar 

  42. A. Marussi, Intrinsic geodesy (a revised and edited version of his 1952 lectures by J.D. Zund), Technical report, Report No. 390, Department of Geodetic Science and Surveying, The Ohio State University, Columbus (1988)

    Google Scholar 

  43. B.H. Chovitz. Hotine’s mathematical geodesy, in IV Symposium on Mathematical Geodesy (1969), pp. 159–172

    Google Scholar 

  44. B.H. Chovitz, Generalized three-dimensional conformal transformations. Bull. Geod. 104, 159–163 (1972)

    Article  Google Scholar 

  45. B.H. Chovitz, The influence of Hotine’s mathematical geodesy. Bollettino di Geodesia e Scienze Affini, anno XLI, 57–64 (1982)

    Google Scholar 

  46. E. Doukakis, Remark on time and reference frames. Bull. Geod. 81 (1978)

    Google Scholar 

  47. E.W. Grafarend, The object of anholonomity and a generalized Riemannian geometry for geodesy. Bollettino di Geofisica Teorica ed Applicata 13, 241–253 (1971)

    Google Scholar 

  48. E.W. Grafarend, Three dimensional geodesy and gravity gradients, Technical report, Ohio State University, report no. 174, Columbus, Ohio, USA (1972)

    Google Scholar 

  49. E.W. Grafarend, Le theoreme de conservation de la courbure et la torsion or attempts at a unified theory of geodesy. Bull. Geod. 109, 237–260 (1973)

    Article  Google Scholar 

  50. E.W. Grafarend, Gravity gradients and three dimensional net adjustment without ellipsoidal reference, Technical report, The Ohio State University, Report No. 202, Columbus (1973)

    Google Scholar 

  51. E.W. Grafarend, in Cartan frames and a foundation of Physical Geodesy, Methoden and Verfahren der Mathematischen Physik, Bd 12, ed. by B. Brosowski, E. Martensen. BI-Verlag, Mathematical Geodesy, Mannheim (1975), pp. 179–208

    Google Scholar 

  52. E.W. Grafarend, Threedimensional geodesy iii: refraction. Bollettino di Geodesia e Scienze Affini 35, 153–160 (1976)

    ADS  MATH  Google Scholar 

  53. E.W. Grafarend, Geodasie - Gausssche oder Cartansche Flaähengeometrie? Allgemeine Vermessungs-Nachrichten 4, 139–150 (1977)

    Google Scholar 

  54. E.W. Grafarend, Der Einfluss der Lotrichtung auf lokale geodätische Netze. Z. Vermessungswesen 112, 413–424 (1987)

    Google Scholar 

  55. E.W. Grafarend, Tensor algebra, linear algebra, multi-linear algebra, Technical report, 344 references, Department of Geodesy and Geoinformatics, Stuttgart University Stuttgart (2004)

    Google Scholar 

  56. E. Livieratos, On the geodetic singularity problem. Manuscripta Geod. 1, 269–292 (1976)

    Google Scholar 

  57. F. Bocchio, Su alcune applicazioni di interesse geode-tico delle connessioni non simmetriche, Rendiconti della classe di scienze Fisiche, matematiche e naturali. Accademia Nazionale dei lincei (Roma) Ser. VIII 48, 343–351 (1970)

    MathSciNet  MATH  Google Scholar 

  58. F. Bocchio, From differential geodesy to differential geophysics. Geophys. J. R. Astron. Soc. 39, 1–10 (1974)

    Article  ADS  Google Scholar 

  59. F. Bocchio, The holonomity problem in geophysics. Bollettino di Geodesia e Scienze Affini, anno XXXIV, 453–459 (1975)

    Google Scholar 

  60. F. Bocchio, Some of Marussi’s contributions in the field of two-dimensional and three dimensional representation. Bollettino di Geodesia e Scienze Affini, anno XXXVII, 441–450 (1978)

    Google Scholar 

  61. F. Bocchio, An inverse geodetic singularity problem. Geophys. J. R. Astron. Soc. 67, 181–187 (1981)

    Article  ADS  Google Scholar 

  62. F. Bocchio, Geodetic singularities in the gravity field of a non-homogenious planet. Geophys. J. R. Astron. Soc. 68, 643–652 (1982)

    Article  ADS  Google Scholar 

  63. F. Bocchio, Geodetic singularities, reviews of geophysics and space physics, in Advances in Geodesy, vol. 20, ed. by R.H. Rapp, E.W. Grafarend (American Geophysical Union, Washington, 1982), pp. 399–409

    Google Scholar 

  64. F. Sanso, The geodetic boundary value problem in gravity space, Memorie Scienze Fisiche (Academia Nationale dei Lincei, Roma, 1997)

    Google Scholar 

  65. G. Ricci, Lezioni sulla teoria delle superficie (F. Drucker, Verona-Padova, 1989)

    MATH  Google Scholar 

  66. G. Ricci, Opere, in Edizioni Cremonese, 2 (1956/1957)

    Google Scholar 

  67. G. Ricci, T. Levi-Civita, Methodes de calcul differentiel absolu et leurs applications. Math. Ann. 54, 125–201 (1901)

    Article  Google Scholar 

  68. H. Flanders, in Differential Forms with Applications to the Physical Sciences. (Academic, New York, 1963)

    Google Scholar 

  69. H. Weyl, Raum-Zeit-Materie: Vorlesungen überiber allgemeine Relativitätstheorie, 5th edn. (Springer, Berlin, 1918)

    MATH  Google Scholar 

  70. H. Weyl, Gruppentheorie and Quantenmechanik (Verlag S. Hirzel, Leipzig, 1928)

    MATH  Google Scholar 

  71. J.A. Schouten, Tensor Analysis for Physicists (Clarendon, Oxford, 1951)

    MATH  Google Scholar 

  72. J.D. Zund, Tensorial methods in classical differential geometry - i: basic principles. Tensor NS 47, 74–82 (1988)

    MathSciNet  MATH  Google Scholar 

  73. J.D. Zund, Tensorial methods in classical differential geometry - i: basic surface tensors. Tensor NS 47, 83–92 (1988)

    MathSciNet  MATH  Google Scholar 

  74. J.D. Zund, Differential geodesy of the Eötvös torsion balance. Manuscripta Geod. 14, 13–18 (1989)

    Google Scholar 

  75. J.D. Zund, The assertion of hotine on the integrabil-ity conditions in his general coordinate system. Manuscripta Geod. 15, 373–382 (1990)

    Google Scholar 

  76. J.D. Zund, An essay on the mathematical foundations of the Marussi-Hotine approach to geodesy. Bollettino di Geodesia e Scienze Affini anno XLIX, 113–179 (1990)

    Google Scholar 

  77. J.D. Zund, The Hotine problem in differential geodesy. Manuscripta Geod. 15, 373–382 (1990)

    Google Scholar 

  78. J.D. Zund, The mathematical foundations of the hotine-marussi approach to geodesy. Bollettino di Geodesia e Scienze Affini anno LI, 125–138 (1992)

    Google Scholar 

  79. J.D. Zund, W. Moore, Hotine’s conjecture in differential geodesy. Bull. Goodesique 61, 209–222 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  80. J.D. Zund, J.M. Wilkes, The significance and generalization of two transformation formulas in Hotine’s mathematical geodesy. Bollettino di Geodesia e Scienze Affini anno XLVII, 77–85 (1998)

    Google Scholar 

  81. J.M. Wilkes, J.D. Zund, Group-theoretical approach to the Schwarzschild solution. Am. J. Phys. 50, 25–27 (1982)

    Article  ADS  Google Scholar 

  82. M. Hotine, Metrical properties of the Earth’s gravitational field, report to i.a.g, Technical report, Toronto Assembly 33-64 of Hotine (1957)

    Google Scholar 

  83. M. Hotine, Geodesic coordinate systems, Technical report, Venice Symposium, 65-89 of Hotine (1957)

    Google Scholar 

  84. M. Hotine, A primer on non-classical geodesy, Technical report, Venice Symposium, 91–130 (1959)

    Google Scholar 

  85. M. Hotine, The orthomorphic projection of the spheroid. Emp. Surv. Rev. 8, 300–311 (1967)

    Article  Google Scholar 

  86. M. Hotine, Mathematical geodesy, U.S. Department of Commerce Washington, D.C. (1969)

    Google Scholar 

  87. N. Grossman, Is the geoid a trapped surface? Bollettino di Geodesiae Scienze Affini anno XXXIV, 173–183 (1978)

    Google Scholar 

  88. N. Grossman, The nature of space near the Earth. Bollettino di Geodesia e Scienze Affini anno XXXV, 413–424 (1979)

    Google Scholar 

  89. P. Defrise, Meteorologie et geometrie differentiae. Institute Royal Moteorologique de Belgique, Bruxelles, A 91 (1975)

    Google Scholar 

  90. P. Defrise, Sur des applications de la geometrie differentielle en Meteorologie et en Goodesie. Bollettino di Geodesia e Scienze Affini 37, 185–196 (1978)

    Google Scholar 

  91. P. Defrise, E.W. Grafarend, Torsion and Anholonomity of geodetic frames. Bollettino di Geodesia e Scienze Affini 35, 81–92 (1976)

    Google Scholar 

  92. P. Holota, Z. Nadenik, Les formes differentielles exterieures dans la Geodesie ii: Courbure moyenne. Studia geoph. at geod. 15, 106–112 (1971)

    Google Scholar 

  93. P. Pizzetti, Un principio fondamentale nello studio delle studio delle superfici di livello terrestri. Rendiconti della Reale Accademia dei Lincei (Roma) 10, 35–39 (1901)

    MATH  Google Scholar 

  94. P. Pizzetti. Höher Geodäsie, Enzyklopädie der Mathematischen Wissenschaften Band VI. Geodasie und Geophysik, 125–239, B.G. Teubner, Leipzig, Erster Teil, 1906

    Google Scholar 

  95. P. Pizzetti, Principii della teoria mecannica della figura dei pianeti (E. Spoerri, Pisa, 1913)

    MATH  Google Scholar 

  96. P. Stäckel, Über die integration der Hamilton-Jacobischen Differentialgleichung mittelst Separation der Variablen (Habilitationsschrift, Halle, 1891)

    Google Scholar 

  97. P. Stäckel, Über die Bewegung eines Punktes in einer n-fachen Mannigfaltigkeit. Math. Ann. 42, 537–563 (1893)

    Article  MathSciNet  Google Scholar 

  98. P. Vanicek, To the problem of holonomity of height systems in: Letter to the Editor, vol 36. The Canadian Surveos (1982), pp. 122–123

    Google Scholar 

  99. S. Roberts, On the parallel surfaces of conicoids and conics. Proc. Lond. Math. Soc. 1(4), 57–91 (1872)

    MathSciNet  MATH  Google Scholar 

  100. S. Roberts, On parallel surfaces. Proc. Lond. Math. Soc. 1(4), 218–235 (1973)

    MathSciNet  MATH  Google Scholar 

  101. V. Schwarze, Satellitengeodätische Positionierung in der Relativistischen Raum-Zeit. Ph.D. Thesis, Deutsche Geodätische Kommission, Bayerische Akademie der Wissenschaften, München (1995)

    Google Scholar 

  102. W. Neutsch, Koordinaten-Theorie und Anwendungen (Spektrum Akademischer Varlag, Heidelberg, 1995)

    Google Scholar 

  103. Y. Georgiadou, E. Livieratos, Anholonomity of the reciprocal natural frame in the normal gravity field of the Earth. Geophys. J. R. Astron. Soc 67, 177–179 (1981)

    Article  ADS  Google Scholar 

  104. Z. Nadenik, Les forms differentielles exterieures dans la Geodesie i: coubure de Gauss. Studia Geoph. et Geod. 15, 1–6 (1971)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

C. Lämmerzahl and D. Pützfeld, /Bremen/ invited me to speak about anholonomity in the context of Relativistic Geodesy within the WE-Heraeus Seminar. Special thanks go to D. Pützfeld, F.W. Hehl/Cologne/ and H. Quevedo/Mexico City/ for their helpful comments. In addition, I am grateful for the support of J. Müller (Hanover) on the International Reference Ellipsoid and to S. M. Kopeikin (Columbia/Missouri) on studying Relativistic Equilibrium Figures and the relativistic theory of the Geoid. Last, but not least, I am grateful to M.A. Javaid(Stuttgart) for his expert typing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik W. Grafarend .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Grafarend, E.W. (2019). Anholonomity in Pre-and Relativistic Geodesy. In: Puetzfeld, D., Lämmerzahl, C. (eds) Relativistic Geodesy. Fundamental Theories of Physics, vol 196. Springer, Cham. https://doi.org/10.1007/978-3-030-11500-5_7

Download citation

Publish with us

Policies and ethics