Skip to main content

Automated Quality Assessment of Space-Continuous Models for Pedestrian Dynamics

  • Conference paper
  • First Online:
Traffic and Granular Flow '17 (TGF 2017)

Included in the following conference series:

  • 661 Accesses

Abstract

In this work we propose a methodology for assessment of pedestrian models continuous in space. With respect to the Kolmogorov–Smirnov distance between two data-clouds, representing, for instance, simulated and the corresponding empirical data, we calculate an evaluation factor between zero and one. Based on the value of the herein developed factor, we make a statement about the goodness of the model under evaluation. Moreover this process can be repeated in an automatic way in order to maximize the above-mentioned factor and hence determine the optimal set of model parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asja, J., Appert-Rolland, C., Lemercier, S., Pettré, J.: Properties of pedestrians walking in line: fundamental diagrams. Phys. Rev. E 85(85), 9 (2012). https://doi.org/10.1103/PhysRevE.85.036111. http://pre.aps.org/abstract/PRE/v85/i3/e036111

  2. Boltes, M., Zhang, J., Seyfried, A., Steffen, B.: T-junction: experiments, trajectory collection, and analysis. In: IEEE Workshop on Modeling, Simulation and Visual Analysis of Large Crowds, vol. 13. International Conference on Computer Vision (ICCV) (2011)

    Google Scholar 

  3. Burghardt, S.: Dynamik von personenströmen in sportstadien. Dissertation, Bergische Universität Wuppertal (2013)

    Google Scholar 

  4. Burghardt, S., Seyfried, A., Klingsch, W.: Improving egress design through measurement and correct interpretation of the fundamental diagram for stairs. In: Panda, M., Chattaraj, U. (eds.) Developments in Road Transportation, pp. 181–187. Macmillan Publishers India Ltd, Noida (2010)

    Google Scholar 

  5. Burghardt, S., Seyfried, A., Klingsch, W.: Fundamental diagram of stairs: Critical review and topographical measurements. In: Weidmann, U., Kirsch, U., Schreckenberg, M. (eds.) Pedestrian and Evacuation Dynamics 2012, pp. 329–344. Springer International Publishing, Cham (2014) https://doi.org/10.1007/978-3-319-02447-9_27

    Chapter  Google Scholar 

  6. Campanella, M., Hoogendoorn, S., Daamen, W.: Quantitative and Qualitative Validation Procedure for General Use of Pedestrian Models, pp. 891–905. Springer International Publishing, Cham (2014). https://doi.org/10.1007/978-3-319-02447-9_74

    Google Scholar 

  7. Chattaraj, U., Seyfried, A., Chakroborty, P.: Comparison of pedestrian fundamental diagram across cultures. Adv. Complex Syst. 12(3), 393–405 (2009). https://doi.org/10.1142/S0219525909002209

    Article  Google Scholar 

  8. Holl, S., Seyfried, A.: Laboratory experiments on crowd dynamics. inSiDE 11(2), 102–103 (2013)

    Google Scholar 

  9. Hoogendoorn, S.P., Daamen, W.: Pedestrian behavior at bottlenecks. Transport. Sci. 39(2), 147–159 (2005). https://doi.org/10.1287/trsc.1040.0102

    Article  Google Scholar 

  10. Kemloh, U., Chraibi, M., Zhang, J.: Jupedsim: Jülich pedestrian simulator. https://doi.org/10.5281/zenodo.592209. http://jupedsim.org

  11. Kemloh Wagoum, A.U., Chraibi, M., Zhang, J.: Jupedsim: an open framework for simulating and analyzing the dynamics of pedestrians. In: 3rd Conference of Transportation Research Group of India (2015)

    Google Scholar 

  12. Kretz, T., Grünebohm, A., Kaufman, M., Mazur, F., Schreckenberg, M.: Experimental study of pedestrian counterflow in a corridor. J. Stat. Mech. 10, P10001 (2006). https://doi.org/10.1088/1742-5468/2006/10/P10001

    Article  Google Scholar 

  13. Kretz, T., Grünebohm, A., Schreckenberg, M.: Experimental study of pedestrian flow through a bottleneck. J. Stat. Mech Theory Exp. 10, 10014 (2006). https://doi.org/10.1088/1742-5468/2006/10/P10014

    Article  Google Scholar 

  14. Liu, X., Song, W., Zhang, J.: Extraction and quantitative analysis of microscopic evacuation characteristics based on digital image processing. Physica A 388(13), 2717–2726 (2009). https://doi.org/10.1016/j.physa.2009.03.017

    Article  Google Scholar 

  15. Moussaid, M., Garnier, S., Theraulaz, G., Helbing, D.: Collective information processing and pattern formation in swarms, flocks and crowds. Top. Cogn. Sci. 1(3), 469–497 (2009)

    Article  Google Scholar 

  16. MSC.1-Circ.1238: Guidelines for evacuation analysis for new and existing passenger ships. Technical report, International Maritime Organization, Marine Safety Committee, London, June 6, 2008. MSC/Circ. 1033

    Google Scholar 

  17. Rimea-richtlinie für mikroskopische entfluchtungs-analysen (2007). www.rimea.de

  18. Ronchi, E., KuKuligowski, E.D., Reneck, P.A., Peacock, R.D., Nilsson, D.: The process of verification and validation of building fire evacuation models. Technical Report, National Institute of Standards and Technology (2013)

    Google Scholar 

  19. Sargent, R.G.: Verification and validation of simulation models. J. Simul. 7(1), 12–24 (2013). https://doi.org/10.1057/jos.2012.20

    Article  MathSciNet  Google Scholar 

  20. Schadschneider, A., Klingsch, W., Kluepfel, H., Kretz, T., Rogsch, C., Seyfried, A.: Evacuation dynamics: empirical results, modeling and applications. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and System Science, vol. 5, pp. 3142–3176. Springer, Berlin (2009)

    Chapter  Google Scholar 

  21. Seer, S., Rudloff, C., Matyus, T., Brändle, N.: Validating social force based models with comprehensive real world motion data. Transp. Res. Procedia 2(0), 724–732 (2014). https://doi.org/10.1016/j.trpro.2014.09.080. http://www.sciencedirect.com/science/article/pii/S2352146514001161. The Conference on Pedestrian and Evacuation Dynamics 2014 (PED 2014), 22–24 October 2014, Delft, The Netherlands

    Article  Google Scholar 

  22. Tordeux, A., Schadschneider, A.: White and relaxed noises in optimal velocity models for pedestrian flow with stop-and-go waves. J. Phys. A Math. Theor. (2016). https://doi.org/10.1088/1751-8113/49/18/185101

    Article  MathSciNet  Google Scholar 

  23. Tordeux, A., Chraibi, M., Seyfried, A.: Collision-Free Speed Model for Pedestrian Dynamics, pp. 225–232. Springer International Publishing, Cham (2016). https://doi.org/10.1007/978-3-319-33482-0_29.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kurtc, V., Chraibi, M., Tordeux, A. (2019). Automated Quality Assessment of Space-Continuous Models for Pedestrian Dynamics. In: Hamdar, S. (eds) Traffic and Granular Flow '17. TGF 2017. Springer, Cham. https://doi.org/10.1007/978-3-030-11440-4_35

Download citation

Publish with us

Policies and ethics