Skip to main content

Commercially Available Smartphone-Based Personalized Mobile Healthcare Technologies

  • Chapter
  • First Online:

Abstract

Smartphone-based personalized mobile healthcare devices (SPMHDs) have become efficient with cost-effectiveness for monitoring and management of healthcare, particularly at remote, decentralized, and personal settings. The last few years have witnessed a surge in commercial SPMHDs for tracking blood pressure, physical activity, blood glucose, body weight, body analysis, pulse rate, electrocardiogram, blood oxygen saturation, and sleep quality. As equipped with advanced Bluetooth technology, Cloud computing, smart application, and telemedicine capabilities, SPMHDs are capable of real-time “on-site” analysis and increasing the user’s compliance by providing constant alerts and notifications. Moreover, they have the most extensive outreach as smartphones have become ubiquitous. With continuous innovation and improvement in mobile healthcare (mH), the next-generation SPMHDs will play a critical role in personalized healthcare to reduce the healthcare costs with improved health outcomes. This chapter provides a comprehensive overview, prospects, and applications of the commercial SPMHDs along with the challenges.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ozcan A. Mobile phones democratize and cultivate next-generation imaging, diagnostics and measurement tools. Lab Chip. 2014.

    Google Scholar 

  2. Thilakanathan D, Chen S, Nepal S, Calvo R, Alem L. A platform for secure monitoring and sharing of generic health data in the Cloud. Futur Gener Comput Syst. 2014;35:102–13.

    Article  Google Scholar 

  3. Portfolio Research Mobile Facebook. 2013. http://www.portioresearch.com/media/3986/Portio%20Research%20Mobile%20Factbook%202013pdf.

  4. Vashist SK, Mudanyali O, Schneider EM, Zengerle R, Ozcan A. Cellphone-based devices for bioanalytical sciences. Anal Bioanal Chem. 2014;406(14):3263–77.

    Article  Google Scholar 

  5. You DJ, Park TS, Yoon JY. Cell-phone-based measurement of TSH using Mie scatter optimized lateral flow assays. Biosens Bioelectron. 2013;40(1):180–5.

    Article  Google Scholar 

  6. Mudanyali O, Dimitrov S, Sikora U, Padmanabhan S, Navruz I, Ozcan A. Integrated rapid-diagnostic-test reader platform on a cellphone. Lab Chip. 2012;12(15):2678–86.

    Article  Google Scholar 

  7. Tseng D, Mudanyali O, Oztoprak C, Isikman SO, Sencan I, Yaglidere O, et al. Lensfree microscopy on a cellphone. Lab Chip. 2010;10(14):1787–92.

    Article  Google Scholar 

  8. Cooper DC, Callahan B, Callahan P, Burnett L. Mobile image ratiometry: a new method for instantaneous analysis of rapid test strips. Nat Preced. 2012. https://doi.org/10.1038/npre201268271.

  9. Cadle BA, Rasmus KC, Varela JA, Leverich LS, O’Neill CE, Bachtell RK, et al. Cellular phone-based image acquisition and quantitative ratiometric method for detecting cocaine and benzoylecgonine for biological and forensic applications. Subst Abus. 2010;4:21–33.

    Google Scholar 

  10. Cooper DC. Mobile image ratiometry for the detection of Botrytis cinerea (Gray Mold). Nat Preced. 2012. https://doi.org/10.1038/npre201269891.

  11. Mudanyali O, Tseng D, Oh C, Isikman SO, Sencan I, Bishara W, et al. Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications. Lab Chip. 2010;10(11):1417–28.

    Article  Google Scholar 

  12. Bishara W, Sikora U, Mudanyali O, Su TW, Yaglidere O, Luckhart S, et al. Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array. Lab Chip. 2011;11(7):1276–9.

    Article  Google Scholar 

  13. Zhu H, Yaglidere O, Su TW, Tseng D, Ozcan A. Cost-effective and compact wide-field fluorescent imaging on a cell-phone. Lab Chip. 2011;11(2):315–22.

    Article  Google Scholar 

  14. Smith ZJ, Chu K, Espenson AR, Rahimzadeh M, Gryshuk A, Molinaro M, et al. Cell-phone-based platform for biomedical device development and education applications. PLoS One. 2011;6(3):e17150.

    Article  Google Scholar 

  15. Breslauer DN, Maamari RN, Switz NA, Lam WA, Fletcher DA. Mobile phone based clinical microscopy for global health applications. PLoS One. 2009;4(7):e6320.

    Article  Google Scholar 

  16. Lillehoj PB, Huang MC, Truong N, Ho CM. Rapid electrochemical detection on a mobile phone. Lab Chip. 2013;13(15):2950–5.

    Article  Google Scholar 

  17. Wireless Smart Gluco-Monitoring System. http://www.ihealthlabs.com/glucometer/wireless-smart-gluco-monitoring-system/.

  18. Geiger GE, Oberding JW, Ward RN, White KD. Blood glucose meter/modem interface arrangement. 2007. U.S. Patent No. 7,181,350. 20 Feb 2007.

    Google Scholar 

  19. Peeters JP. Diagnostic radio frequency identification sensors and applications thereof. 2011. U.S. Patent No. 8,077,042. 13 Dec 2011.

    Google Scholar 

  20. Shen L, Hagen JA, Papautsky I. Point-of-care colorimetric detection with a smartphone. Lab Chip. 2012;12(21):4240–3.

    Article  Google Scholar 

  21. Lu Y, Shi W, Qin J, Lin B. Low cost, portable detection of gold nanoparticle-labeled microfluidic immunoassay with camera cell phone. Electrophoresis. 2009;30(4):579–82.

    Article  Google Scholar 

  22. Coskun AF, Wong J, Khodadadi D, Nagi R, Tey A, Ozcan A. A personalized food allergen testing platform on a cellphone. Lab Chip. 2013;13(4):636–40.

    Article  Google Scholar 

  23. Zhu H, Sikora U, Ozcan A. Quantum dot enabled detection of Escherichia coli using a cell-phone. Analyst. 2012;137(11):2541–4.

    Article  Google Scholar 

  24. Thomas MA, Narayan PR, Christian C. Mitigating gaps in reproductive health reporting in outlier communities of Kerala, India—A mobile phone-based health information system. Health Policy Technol. 2012;1(2):69–76.

    Article  Google Scholar 

  25. McGeough CM, O’Driscoll S. Camera phone-based quantitative analysis of C-reactive protein ELISA. IEEE Trans Biomed Circ Syst. 2013;7(5):655–9.

    Article  Google Scholar 

  26. Preechaburana P, Gonzalez MC, Suska A, Filippini D. Surface plasmon resonance chemical sensing on cell phones. Angew Chem. 2012;51(46):11585–8.

    Article  Google Scholar 

  27. Zhu H, Mavandadi S, Coskun AF, Yaglidere O, Ozcan A. Optofluidic fluorescent imaging cytometry on a cell phone. Anal Chem. 2011;83(17):6641–7.

    Article  Google Scholar 

  28. Zhu H, Sencan I, Wong J, Dimitrov S, Tseng D, Nagashima K, et al. Cost-effective and rapid blood analysis on a cell-phone. Lab Chip. 2013;13(7):1282–8.

    Article  Google Scholar 

  29. Benhamou PY, Melki V, Boizel R, Perreal F, Quesada JL, Bessieres-Lacombe S, et al. One-year efficacy and safety of Web-based follow-up using cellular phone in type 1 diabetic patients under insulin pump therapy: the PumpNet study. Diabetes Metab. 2007;33(3):220–6.

    Article  Google Scholar 

  30. Botsis T, Hartvigsen G. Current status and future perspectives in telecare for elderly people suffering from chronic diseases. J Telemed Telecare. 2008;14(4):195–203.

    Article  Google Scholar 

  31. Carrera PM, Dalton AR. Do-it-yourself healthcare: the current landscape, prospects and consequences. Maturitas. 2014;77(1):37–40.

    Article  Google Scholar 

  32. Carter MC, Burley VJ, Nykjaer C, Cade JE. Adherence to a smartphone application for weight loss compared to website and paper diary: pilot randomized controlled trial. J Med Internet Res. 2013;15(4):e32.

    Article  Google Scholar 

  33. Coulter A. Engaging patients in healthcare. McGraw-Hill International; 2011.

    Google Scholar 

  34. Donker T, Petrie K, Proudfoot J, Clarke J, Birch MR, Christensen H. Smartphones for smarter delivery of mental health programs: a systematic review. J Med Internet Res. 2013;15(11):e247.

    Article  Google Scholar 

  35. Duffy MB. Humanizing the healthcare experience: the key to improved outcomes. Gastrointest Endosc. 2014;79(3):499–502.

    Article  MathSciNet  Google Scholar 

  36. Fiordelli M, Diviani N, Schulz PJ. Mapping mHealth research: a decade of evolution. J Med Internet Res. 2013;15(5):e95.

    Article  Google Scholar 

  37. Franc S, Borot S, Ronsin O, Quesada JL, Dardari D, Fagour C, et al. Telemedicine and type 1 diabetes: is technology per se sufficient to improve glycaemic control? Diabetes Metab. 2014;40(1):61–6.

    Article  Google Scholar 

  38. Free C, Phillips G, Galli L, Watson L, Felix L, Edwards P, et al. The effectiveness of mobile-health technology-based health behaviour change or disease management interventions for health care consumers: a systematic review. PLoS Med. 2013;10(1):e1001362.

    Article  Google Scholar 

  39. Free C, Phillips G, Watson L, Galli L, Felix L, Edwards P, et al. The effectiveness of mobile-health technologies to improve health care service delivery processes: a systematic review and meta-analysis. PLoS Med. 2013;10(1):e1001363.

    Article  Google Scholar 

  40. Honka A, Kaipainen K, Hietala H, Saranummi N. Rethinking health: ICT-enabled services to empower people to manage their health. IEEE Rev Biomed Eng. 2011;4:119–39.

    Article  Google Scholar 

  41. Joe J, Demiris G. Older adults and mobile phones for health: a review. J Biomed Inform. 2013;46(5):947–54.

    Article  Google Scholar 

  42. Kaplan RM, Stone AA. Bringing the laboratory and clinic to the community: mobile technologies for health promotion and disease prevention. Annu Rev Psychol. 2013;64:471–98.

    Article  Google Scholar 

  43. Luxton DD, McCann RA, Bush NE, Mishkind MC, Reger GM. mHealth for mental health: integrating smartphone technology in behavioral healthcare. Prof Psychol-Res Pr. 2011;42(6):505–12.

    Article  Google Scholar 

  44. O’Reilly GA, Spruijt-Metz D. Current mHealth technologies for physical activity assessment and promotion. Am J Prev Med. 2013;45(4):501–7.

    Article  Google Scholar 

  45. Pagoto S. The current state of lifestyle intervention implementation research: where do we go next? Transl Behav Med. 2011;1(3):401–5.

    Article  Google Scholar 

  46. Price M, Yuen EK, Goetter EM, Herbert JD, Forman EM, Acierno R, et al. mHealth: a mechanism to deliver more accessible, more effective mental health care. Clin Psychol Psychother. 2013.

    Google Scholar 

  47. Stephens J, Allen J. Mobile phone interventions to increase physical activity and reduce weight: a systematic review. J Cardiovasc Nurs. 2013;28(4):320–9.

    Article  Google Scholar 

  48. Martínez-Pérez B, de la Torre-Díez I, López-Coronado M. Mobile health applications for the most prevalent conditions by the World Health Organization: review and analysis. J Med Internet Res. 2013;15(6).

    Article  Google Scholar 

  49. Phillips G, Felix L, Galli L, Patel V, Edwards P. The effectiveness of M-health technologies for improving health and health services: a systematic review protocol. BMC Res Notes. 2010;3(1):250.

    Article  Google Scholar 

  50. Mosa AS, Yoo I, Sheets L. A systematic review of healthcare applications for smartphones. BMC Med Inform Decis Mak. 2012;12(1):67.

    Article  Google Scholar 

  51. Bellina L, Missoni E. Mobile cell-phones (M-phones) in telemicroscopy: increasing connectivity of isolated laboratories. Diagn Pathol. 2009;4:19.

    Article  Google Scholar 

  52. Dayer L, Heldenbrand S, Anderson P, Gubbins PO, Martin BC. Smartphone medication adherence apps: potential benefits to patients and providers. J Am Pharm Assoc. 2013;53(2):172.

    Article  Google Scholar 

  53. Hasvold PE, Wootton R. Use of telephone and SMS reminders to improve attendance at hospital appointments: a systematic review. J Telemed Telecare. 2011;17(7):358–64.

    Article  Google Scholar 

  54. Lester RT, Ritvo P, Mills EJ, Kariri A, Karanja S, Chung MH, et al. Effects of a mobile phone short message service on antiretroviral treatment adherence in Kenya (WelTel Kenya1): a randomised trial. Lancet. 2010;376(9755):1838–45.

    Article  Google Scholar 

  55. Montes JM, Medina E, Gomez-Beneyto M, Maurino J. A short message service (SMS)-based strategy for enhancing adherence to antipsychotic medication in schizophrenia. Psychiatry Res. 2012;200(2–3):89–95.

    Article  Google Scholar 

  56. Tripp N, Hainey K, Liu A, Poulton A, Peek M, Kim J, et al. An emerging model of maternity care: smartphone, midwife, doctor? Women Birth. 2014;27(1):64–7.

    Article  Google Scholar 

  57. Demidowich AP, Lu K, Tamler R, Bloomgarden Z. An evaluation of diabetes self-management applications for Android smartphones. J Telemed Telecare. 2012;18(4):235–8.

    Article  Google Scholar 

  58. Rao A, Hou P, Golnik T, Flaherty J, Vu S. Evolution of data management tools for managing self-monitoring of blood glucose results: a survey of iPhone applications. J Diabetes Sci Technol. 2010;4(4):949–57.

    Article  Google Scholar 

  59. Migliore M. Smartphones or tablets for a better communication and education between residents and consultant in a teaching hospital. J Surg Educ. 2013;70(4):437–8.

    Article  Google Scholar 

  60. Payne KFB, Wharrad H, Watts K. Smartphone and medical related App use among medical students and junior doctors in the United Kingdom (UK): a regional survey. BMC Med Inform Decis Mak. 2012;12(1):121.

    Article  Google Scholar 

  61. Lunny C, Taylor D, Memetovic J, Warje O, Lester R, Wong T, et al. Short message service (SMS) interventions for the prevention and treatment of sexually transmitted infections: a systematic review protocol. Syst Rev. 2014;3(1):7.

    Article  Google Scholar 

  62. Muessig KE, Pike EC, Legrand S, Hightow-Weidman LB. Mobile phone applications for the care and prevention of HIV and other sexually transmitted diseases: a review. J Med Internet Res. 2013;15(1):e1.

    Article  Google Scholar 

  63. Lee AWM, Ng JKY, Wong EYW, Tan A, Lau AKY, Lai SFY. Lecture Rule No. 1: Cell phones ON, please! A low-cost personal response system for learning and teaching. J Chem Educ. 2013;90(3):388–9.

    Article  Google Scholar 

  64. Wallace S, Clark M, White J. ‘It’s on my iPhone’: attitudes to the use of mobile computing devices in medical education, a mixed-methods study. BMJ Open. 2012;2(4).

    Article  Google Scholar 

  65. Lau JK, Lowres N, Neubeck L, Brieger DB, Sy RW, Galloway CD, et al. iPhone ECG application for community screening to detect silent atrial fibrillation: a novel technology to prevent stroke. Int J Cardiol. 2013;165(1):193–4.

    Article  Google Scholar 

  66. Peck JL, Stanton M, Reynolds GE. Smartphone preventive health care: parental use of an immunization reminder system. J Pediatr Health Care. 2014;28(1):35–42.

    Article  Google Scholar 

  67. Lwin MO, Vijaykumar S, Fernando ON, Cheong SA, Rathnayake VS, Lim G, et al. A 21st century approach to tackling dengue: crowdsourced surveillance, predictive mapping and tailored communication. Acta Trop. 2013;130C:100–7.

    Google Scholar 

  68. Doyle GJ, Garrett B, Currie LM. Integrating mobile devices into nursing curricula: opportunities for implementation using Rogers’ Diffusion of Innovation model. Nurse Educ Today. 2014;34(5):775–82.

    Article  Google Scholar 

  69. http://www.ihealthlabs.com/.

  70. Xie L, Wang T, Huang T, Hou W, Huang G, Du Y. Dew inspired breathing-based detection of genetic point mutation visualized by naked eye. Sci Rep. 2014;4:6300.

    Article  Google Scholar 

  71. http://www.alivecor.com/home.

  72. http://gentag.com/.

  73. http://www.apple.com/watch/.

  74. http://www.samsung.com/global/galaxy/gear-s2/.

  75. http://www.samsung.com/global/galaxy/gear-fit2/.

  76. http://www.samsung.com/us/ssic/pdf/Samsung_Simband_Backgrounderpdf.

  77. Yang Y, Zhang H, Liu Y, Lin ZH, Lee S, Lin Z, et al. Silicon-based hybrid energy cell for self-powered electrodegradation and personal electronics. ACS Nano. 2013;7(3):2808–13.

    Article  Google Scholar 

  78. http://www.ibdoc.net/?lang=en.

  79. Woolley CF, Hayes MA. Emerging technologies for biomedical analysis. Analyst. 2014;139(10):2277–88.

    Article  Google Scholar 

  80. Wu WH, Bui AA, Batalin MA, Au LK, Binney JD, Kaiser WJ. MEDIC: medical embedded device for individualized care. Artif Intell Med. 2008;42(2):137–52.

    Article  Google Scholar 

  81. http://www.nonin.com/PulseOximetry/Finger/Onyx9560.

  82. https://cicret.com/wordpress/.

  83. https://www.fitbit.com/us.

  84. http://www.garmin.com/en-GB/.

  85. http://www.nubandsports.com/nuband01/.

  86. http://www.nubandsports.com/nuband-active/.

  87. http://www.cellmic.com/.

  88. Vashist SK, Zheng D, Al-Rubeaan K, Luong JHT, Sheu FS. Technology behind commercial devices for blood glucose monitoring in diabetes management: a review. Anal Chim Acta. 2011;703(2):124–36.

    Article  Google Scholar 

  89. Vashist SK. Non-invasive glucose monitoring technology in diabetes management: a review. Anal Chim Acta. 2012;750:16–27.

    Article  Google Scholar 

  90. Vashist SK. Continuous glucose monitoring systems: a review. Diagnostics. 2013;3(4):385–412.

    Article  Google Scholar 

  91. Gudmundsson J, Besenbacher S, Sulem P, Gudbjartsson DF, Olafsson I, Arinbjarnarson S, et al. Genetic correction of PSA values using sequence variants associated with PSA levels. Sci Transl Med. 2010;2(62):62ra92.

    Article  Google Scholar 

  92. Vashist SK, Schneider EM, Luong JHT. Commercial smartphone-based devices and smart applications for personalized healthcare monitoring and management. Diagnostics (Basel). 2014;4(3):104–28.

    Article  Google Scholar 

  93. Incidence and trends of foodborne illness. 2011. http://www.cdc.gov/features/dsfoodnet/.

  94. Scharff RL. Economic burden from health losses due to foodborne illness in the United States. J Food Prot. 2012;75(1):123–31.

    Article  Google Scholar 

  95. Bickler PE, Feiner JR, Severinghaus JW. Effects of skin pigmentation on pulse oximeter accuracy at low saturation. Anesthesiology. 2005;102(4):715–9.

    Article  Google Scholar 

  96. Macnab AJ, Smith M, Phillips N, Smart P. Oximeter reliability in a subzero environment. Aviat Space Environ Med. 1996;67(11):1053–6.

    Google Scholar 

  97. Schermer T, Leenders J, in ‘t Veen H, van den Bosch W, Wissink A, Smeele I, et al. Pulse oximetry in family practice: indications and clinical observations in patients with COPD. Fam Pract. 2009;26(6):524–31.

    Article  Google Scholar 

  98. Jubran A. Pulse oximetry. Crit Care. 1999;3(2):R11–7.

    Article  Google Scholar 

  99. Sinex JE. Pulse oximetry: principles and limitations. Am J Emerg Med. 1999;17(1):59–67.

    Article  Google Scholar 

  100. Marston S, Li Z, Bandyopadhyay S, Zhang J, Ghalsasi A. Cloud computing — The business perspective. Decis Support Syst. 2011;51(1):176–89.

    Article  Google Scholar 

  101. Subashini S, Kavitha V. A survey on security issues in service delivery models of cloud computing. J Netw Comput Appl. 2011;34(1):1–11.

    Article  Google Scholar 

  102. Sun DW, Chang GR, Sun LN, Wang XW. Surveying and analyzing security, privacy and trust issues in cloud computing environments. Proc Eng. 2011;15:2852–6.

    Article  Google Scholar 

  103. Zissis D, Lekkas D. Addressing cloud computing security issues. Futur Gener Comput Syst. 2012;28(3):583–92.

    Article  Google Scholar 

  104. Li M, Yu SC, Zheng Y, Ren K, Lou WJ. Scalable and secure sharing of personal health records in cloud computing using attribute-based encryption. IEEE Trans Parall Distr. 2013;24(1):131–43.

    Article  Google Scholar 

  105. Schweitzer EJ. Reconciliation of the cloud computing model with US federal electronic health record regulations. J Am Med Inform Assoc. 2012;19(2):161–5.

    Article  Google Scholar 

  106. Blumenthal D, Tavenner M. The “meaningful use” regulation for electronic health records. N Engl J Med. 2010;363(6):501–4.

    Article  Google Scholar 

  107. Blumenthal D. Launching HITECH. N Engl J Med. 2010;362(5):382–5.

    Article  Google Scholar 

  108. Dinh HT, Lee C, Niyato D, Wang P. A survey of mobile cloud computing: architecture, applications, and approaches. Wirel Commun Mob Comput. 2013;13(18):1587–611.

    Article  Google Scholar 

  109. Boulos MN, Wheeler S, Tavares C, Jones R. How smartphones are changing the face of mobile and participatory healthcare: an overview, with example from eCAALYX. Biomed Eng Online. 2011;10(1):24.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vashist, S.K., Luong, J.H.T. (2019). Commercially Available Smartphone-Based Personalized Mobile Healthcare Technologies. In: Point-of-Care Technologies Enabling Next-Generation Healthcare Monitoring and Management. Springer, Cham. https://doi.org/10.1007/978-3-030-11416-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11416-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11415-2

  • Online ISBN: 978-3-030-11416-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics