Skip to main content

An Overview of Point-of-Care Technologies Enabling Next-Generation Healthcare Monitoring and Management

  • Chapter
  • First Online:
Point-of-Care Technologies Enabling Next-Generation Healthcare Monitoring and Management

Abstract

Point-of-care (POC) technologies have advanced considerably during the last decade to pave the way to the emergence of next-generation healthcare monitoring and management. The most prominent developments encompass the smartphone (SP)-based technologies, paper-based assays (PBA), lab-on-a-chip (LOC) platforms, microfluidic operations, new biosensors, rapid assay formats, automated and fully integrated assay technologies, prolonged reagent storage concepts, and novel bioanalytical technologies. The advances in complementary technologies would provide considerable support to the development of critically improved POC technologies. Although paper- and LOC-based assays are cost-effective and simple, emerging SP-based technologies become the ideal POC solution for healthcare due to their enormous outreach and enriched features. Such POC technologies could increase the outreach of healthcare for remote and decentralized settings worldwide. The recent trend is strongly inclined toward mobile healthcare (mH), which would lead to critically improved healthcare monitoring and management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kost GJ. Guidelines for point-of-care testing. Improving patient outcomes. Am J Clin Pathol. 1995;104(4 Suppl 1):S111–27.

    Google Scholar 

  2. Yager P, Domingo GJ, Gerdes J. Point-of-care diagnostics for global health. Annu Rev Biomed Eng. 2008;10:107–44.

    Article  Google Scholar 

  3. Gubala V, Harris LF, Ricco AJ, Tan MX, Williams DE. Point of care diagnostics: status and future. Anal Chem. 2012;84(2):487–515.

    Article  Google Scholar 

  4. Luppa PB, Müller C, Schlichtiger A, Schlebusch H. Point-of-care testing (POCT): current techniques and future perspectives. Trends Anal Chem. 2011;30(6):887–98.

    Article  Google Scholar 

  5. Point-of-Care Diagnostics Market. https://www.marketsandmarkets.com/Market-Reports/point-of-care-diagnostic-market-106829185.html. Accessed 30 Dec 2017.

  6. Blood glucose monitoring devices (Meters, test strips, lancets) - Global pipeline analysis, competitive landscape and market forecasts to 2017. https://www.businesswire.com/news/home/20120111006216/en/Research-Markets-Blood-Glucose-Test-Strips-Market#.Vdw5LPTIDCs. Accessed 30 Dec 2017.

  7. Vashist SK, Luppa PB, Yeo LY, Ozcan A, Luong JHT. Emerging technologies for next-generation point-of-care testing. Trends Biotechnol. 2015;33(11):692–705.

    Article  Google Scholar 

  8. International Diabetes Federation (IDF). Diabetes atlas. 8th ed. http://www.diabetesatlas.org/across-the-globe.html. Accessed 30 Dec 2017.

  9. Wild SH, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030: response to Rathman and Giani. Diabetes Care. 2004;27(10):2568–9.

    Article  Google Scholar 

  10. Sexually Transmitted Infections (STIs). http://www.who.int/mediacentre/factsheets/fs110/en/. Accessed 30 Dec 2017.

  11. Cardiovascular diseases (CVDs). http://www.who.int/mediacentre/factsheets/fs317/en/. Accessed 30 Dec 2017.

  12. Tuberculosis. http://www.who.int/mediacentre/factsheets/fs104/en/. Accessed 30 Dec 2017.

  13. Cancer. http://www.who.int/mediacentre/factsheets/fs297/en/. Accessed 30 Dec 2017.

  14. Malaria. http://www.who.int/mediacentre/factsheets/fs094/en/. Accessed 30 Dec 2017.

  15. Depression. http://www.who.int/mediacentre/factsheets/fs369/en/. Accessed 30 Dec 2017.

  16. Vashist SK. Non-invasive glucose monitoring technology in diabetes management: a review. Anal Chim Acta. 2012;750:16–27.

    Article  Google Scholar 

  17. Vashist SK. Continuous glucose monitoring systems: a review. Diagnostics. 2013;3(4):385–412.

    Article  Google Scholar 

  18. Vashist SK, Luong JHT. Point-of-care glucose detection for diabetic monitoring and management. Boca Raton: CRC Press; 2017.

    Google Scholar 

  19. Vashist SK, Zheng D, Al-Rubeaan K, Luong JHT, Sheu FS. Technology behind commercial devices for blood glucose monitoring in diabetes management: a review. Anal Chim Acta. 2011;703(2):124–36.

    Article  Google Scholar 

  20. Owen N, Sparling PB, Healy GN, Dunstan DW, Matthews CE, editors. Sedentary behavior: emerging evidence for a new health risk. Mayo Clin Proc. 2010;85(12):1138–41.

    Google Scholar 

  21. Owen N, Healy GN, Matthews CE, Dunstan DW. Too much sitting: the population health science of sedentary behavior. Exerc Sport Sci Rev. 2010;38(3):105–13.

    Article  Google Scholar 

  22. Vashist SK. Too much sitting: a potential health hazard and a global call to action. Aust J Basic Appl Sci. 2015;11:131–5.

    Article  Google Scholar 

  23. Brownstein JS, Freifeld CC, Madoff LC. Digital disease detection—harnessing the web for public health surveillance. N Engl J Med. 2009;360(21):2153–7.

    Article  Google Scholar 

  24. Ostroff SM, Griffin PM, Tauxe RV, Shipman LD, Greene KD, Wells JG, et al. A statewide outbreak of Escherichia coli 0157: H7 infections in Washington state. Am J Epidemiol. 1990;132(2):239–47.

    Article  Google Scholar 

  25. Davis B, Brogan R. A widespread community outbreak of E coli 0157 infection in Scotland. Public Health. 1995;109(5):381–8.

    Article  Google Scholar 

  26. Arnon SS, Schechter R, Inglesby TV, Henderson DA, Bartlett JG, Ascher MS, et al. Botulinum toxin as a biological weapon: medical and public health management. JAMA. 2001;285(8):1059–70.

    Article  Google Scholar 

  27. Wein LM, Liu Y. Analyzing a bioterror attack on the food supply: the case of botulinum toxin in milk. Proc Natl Acad Sci. 2005;102(28):9984–9.

    Article  Google Scholar 

  28. Hennessy TW, Hedberg CW, Slutsker L, White KE, Besser-Wiek JM, Moen ME, et al. A national outbreak of Salmonella enteritidis infections from ice cream. The investigation team. N Engl J Med. 1996;334(20):1281–6.

    Article  Google Scholar 

  29. De Buyser ML, Dufour B, Maire M, Lafarge V. Implication of milk and milk products in food-borne diseases in France and in different industrialised countries. Int J Food Microbiol. 2001;67(1–2):1–17.

    Article  Google Scholar 

  30. Zhao C, Ge B, De Villena J, Sudler R, Yeh E, Zhao S, et al. Prevalence of campylobacter spp., Escherichia coli, and Salmonella serovars in retail chicken, turkey, pork, and beef from the greater Washington, DC, area. Appl Environ Microbiol. 2001;67(12):5431–6.

    Google Scholar 

  31. Taylor SL, Nordlee JA, Niemann LM, Lambrecht DM. Allergen immunoassays—considerations for use of naturally incurred standards. Anal Bioanal Chem. 2009;395(1):83–92.

    Article  Google Scholar 

  32. Tucker JD, Bien CH, Peeling RW. Point-of-care testing for sexually transmitted infections: recent advances and implications for disease control. Curr Opin Infect Dis. 2013;26(1):73–9.

    Article  Google Scholar 

  33. Global estimates by WHO region. http://www.who.int/hiv/data/epi_plhiv_2016_regions.png?ua=1. Accessed 30 Dec 2017.

  34. Boonlert W, Lolekha PH, Kost GJ, Lolekha S. Comparison of the performance of point-of-care and device analyzers to hospital laboratory instruments. Point of Care. 2003;2(3):172–8.

    Google Scholar 

  35. Kost GJ, Vu HT, Lee JH, Bourgeois P, Kiechle FL, Martin C, et al. Multicenter study of oxygen-insensitive handheld glucose point-of-care testing in critical care/hospital/ambulatory patients in the United States and Canada. Crit Care Med. 1998;26(3):581–90.

    Article  Google Scholar 

  36. Young DS. Effects of drugs on clinical laboratory tests. Ann Clin Biochem. 1997;34(6):579–81.

    Article  Google Scholar 

  37. FreeStyle Libre. https://www.freestylelibre.co.uk/libre/. Accessed 30 Dec 2017.

  38. Continuous Glucose Monitoring (CGM): Technologies and Global Markets. https://www.bccresearch.com/market-research/healthcare/continuous-glucose-monitoring-cgm-technology-markets-report-hlc102b.html?utm_source=hs_email&utm_medium=email&utm_content=15754702&_hsenc=p2ANqtz-91CFptaehTf6RxgJo3B2Tn9ZAE0_vGdJE8768hWOwA6YJiIhKHcHW5me__5CSA7gH1rbKhSVt2J_SudLnPgmLXeAZsYSjaYhan35UuWEqK1c4gCU8&_hsmi=15754702. Accessed 30 Dec 2017.

  39. Kost GJ, Tran NK. Point-of-care testing and cardiac biomarkers: the standard of care and vision for chest pain centers. Cardiol Clin. 2005;23(4):467–90.. vi

    Article  Google Scholar 

  40. Floriano PN, Christodoulides N, Miller CS, Ebersole JL, Spertus J, Rose BG, et al. Use of saliva-based nano-biochip tests for acute myocardial infarction at the point of care: a feasibility study. Clin Chem. 2009;55(8):1530–8.

    Article  Google Scholar 

  41. Jaffe AS, Babuin L, Apple FS. Biomarkers in acute cardiac disease: the present and the future. J Am Coll Cardiol. 2006;48(1):1–11.

    Article  Google Scholar 

  42. Cobas b221 Blood Gas System. https://usdiagnostics.roche.com/en/point-of-care-testing/poc-testing/blood-gas-and-electrolytes/cobas-b221.html. Accessed 30 Dec 2017.

  43. Cobas u441 Analyzer. https://usdiagnostics.roche.com/en/core_laboratory/instrument/cobas-u-411-analyzer.html. Accessed 30 Dec 2017.

  44. Cobas Liat PCR System. https://usdiagnostics.roche.com/en/point-of-care-testing/poc-testing/infectious-disease/cobas-liat-pcr-system.html. Accessed 30 Dec 2017.

  45. CoaguChek XS System. http://www.coaguchek-usa.com/coaguchek_hcp/en_US/home/coaguchek-products/coaguchek-xs-system.html. Accessed 30 Dec 2017.

  46. Accutrend Plus System. https://usdiagnostics.roche.com/en/point-of-care-testing/poc-testing/cholesterol/accutrend-plus.html. Accessed 30 Dec 2017.

  47. Siemens Healthcare GmbH. Point-of-Care Testing. https://www.healthcare.siemens.com/point-of-care-testing. Accessed 30 Dec 2017.

  48. i-STAT Handheld. https://www.pointofcare.abbott/us/en/offerings/istat/istat-handheld. Accessed 30 Dec 2017.

  49. Vashist SK, Schneider EM, Luong JHT. Commercial smartphone-based devices and smart applications for personalized healthcare monitoring and management. Diagnostics. 2014;4(3):104–28.

    Article  Google Scholar 

  50. Vashist SK, Mudanyali O, Schneider EM, Zengerle R, Ozcan A. Cellphone-based devices for bioanalytical sciences. Anal Bioanal Chem. 2014;406(14):3263–77.

    Article  Google Scholar 

  51. Ozcan A. Mobile phones democratize and cultivate next-generation imaging, diagnostics and measurement tools. Lab Chip. 2014;14(17):3187–94.

    Article  Google Scholar 

  52. Vashist SK, Luong JHT. Handbook of immunoassay technologies: approaches, performances, and applications. 1st ed. Cambridge, MA: Academic Press; 2018.

    Google Scholar 

  53. Vashist SK, Marion Schneider E, Zengerle R, von Stetten F, Luong JHT. Graphene-based rapid and highly-sensitive immunoassay for C-reactive protein using a smartphone-based colorimetric reader. Biosens Bioelectron. 2015;66(0):169–76.

    Article  Google Scholar 

  54. Vashist SK, van Oordt T, Schneider EM, Zengerle R, von Stetten F, Luong JHT. A smartphone-based colorimetric reader for bioanalytical applications using the screen-based bottom illumination provided by gadgets. Biosens Bioelectron. 2015;67:248–55.

    Article  Google Scholar 

  55. Coskun AF, Wong J, Khodadadi D, Nagi R, Tey A, Ozcan A. A personalized food allergen testing platform on a cellphone. Lab Chip. 2013;13(4):636–40.

    Article  Google Scholar 

  56. Wei Q, Nagi R, Sadeghi K, Feng S, Yan E, Ki SJ, et al. Detection and spatial mapping of mercury contamination in water samples using a smart-phone. ACS Nano. 2014;8(2):1121–9.

    Article  Google Scholar 

  57. Rajendran VK, Bakthavathsalam P, Ali BMJ. Smartphone based bacterial detection using biofunctionalized fluorescent nanoparticles. Microchim Acta. 2014;181(15–16):1815–21.

    Article  Google Scholar 

  58. Walker FM, Ahmad KM, Eisenstein M, Soh HT. Transformation of personal computers and mobile phones into genetic diagnostic systems. Anal Chem. 2014;86(18):9236–41.

    Article  Google Scholar 

  59. Zangheri M, Cevenini L, Anfossi L, Baggiani C, Simoni P, Di Nardo F, et al. A simple and compact smartphone accessory for quantitative chemiluminescence-based lateral flow immunoassay for salivary cortisol detection. Biosens Bioelectron. 2015;64:63–8.

    Article  Google Scholar 

  60. Roda A, Michelini E, Cevenini L, Calabria D, Calabretta MM, Simoni P. Integrating biochemiluminescence detection on smartphones: mobile chemistry platform for point-of-need analysis. Anal Chem. 2014;86(15):7299–304.

    Article  Google Scholar 

  61. Petryayeva E, Algar WR. Multiplexed homogeneous assays of proteolytic activity using a smartphone and quantum dots. Anal Chem. 2014;86(6):3195–202.

    Article  Google Scholar 

  62. Preechaburana P, Gonzalez MC, Suska A, Filippini D. Surface plasmon resonance chemical sensing on cell phones. Angew Chem Int Ed Eng. 2012;51(46):11585–8.

    Article  Google Scholar 

  63. Coskun AF, Cetin AE, Galarreta BC, Alvarez DA, Altug H, Ozcan A. Lensfree optofluidic plasmonic sensor for real-time and label-free monitoring of molecular binding events over a wide field-of-view. Sci Rep. 2014;4:6789.

    Article  Google Scholar 

  64. Lillehoj PB, Huang MC, Truong N, Ho CM. Rapid electrochemical detection on a mobile phone. Lab Chip. 2013;13(15):2950–5.

    Article  Google Scholar 

  65. Wang X, Gartia MR, Jiang J, Chang T-W, Qian J, Liu Y, et al. Audio jack based miniaturized mobile phone electrochemical sensing platform. Sensors Actuators B Chem. 2015;209:677–85.

    Article  Google Scholar 

  66. Sun A, Wambach T, Venkatesh A, Hall DA, editors. A multitechnique reconfigurable electrochemical biosensor for integration into mobile technologies. Biomedical Circuits and Systems Conference (BioCAS), 2015 IEEE; DOI: 10.1109/BioCAS.2015.7348314.

    Google Scholar 

  67. Sun AC, Yao C, Venkatesh AG, Hall DA. An efficient power harvesting Mobile phone-based electrochemical biosensor for point-of-care health monitoring. Sensors Actuators B: Chemical. 2016;235:126–35.

    Article  Google Scholar 

  68. Sun A, Wambach T, Venkatesh A, Hall DA, editors. A low-cost smartphone-based electrochemical biosensor for point-of-care diagnostics. Biomedical Circuits and Systems Conference (BioCAS), 2014 IEEE; DOI: 10.1109/BioCAS.2014.6981725.

    Google Scholar 

  69. You DJ, San Park T, Yoon J-Y. Cell-phone-based measurement of TSH using Mie scatter optimized lateral flow assays. Biosens Bioelectron. 2013;40(1):180–5.

    Article  Google Scholar 

  70. Mudanyali O, Dimitrov S, Sikora U, Padmanabhan S, Navruz I, Ozcan A. Integrated rapid-diagnostic-test reader platform on a cellphone. Lab Chip. 2012;12(15):2678–86.

    Article  Google Scholar 

  71. iHealth Align. https://ihealthlabs.com/glucometer/ihealth-align/. Accessed 30 Dec 2017.

  72. Zhu H, Mavandadi S, Coskun AF, Yaglidere O, Ozcan A. Optofluidic fluorescent imaging cytometry on a cell phone. Anal Chem. 2011;83(17):6641–7.

    Article  Google Scholar 

  73. Smith ZJ, Chu K, Espenson AR, Rahimzadeh M, Gryshuk A, Molinaro M, et al. Cell-phone-based platform for biomedical device development and education applications. PLoS One. 2011;6(3):e17150.

    Article  Google Scholar 

  74. Breslauer DN, Maamari RN, Switz NA, Lam WA, Fletcher DA. Mobile phone based clinical microscopy for global health applications. PLoS One. 2009;4(7):e6320.

    Article  Google Scholar 

  75. Zhu H, Yaglidere O, Su TW, Tseng D, Ozcan A. Cost-effective and compact wide-field fluorescent imaging on a cell-phone. Lab Chip. 2011;11(2):315–22.

    Article  Google Scholar 

  76. Tseng D, Mudanyali O, Oztoprak C, Isikman SO, Sencan I, Yaglidere O, et al. Lensfree microscopy on a cellphone. Lab Chip. 2010;10(14):1787–92.

    Article  Google Scholar 

  77. Wei Q, Qi H, Luo W, Tseng D, Ki SJ, Wan Z, et al. Fluorescent imaging of single nanoparticles and viruses on a smart phone. ACS Nano. 2013;7(10):9147–55.

    Article  Google Scholar 

  78. Laksanasopin T, Guo TW, Nayak S, Sridhara AA, Xie S, Olowookere OO, et al. A smartphone dongle for diagnosis of infectious diseases at the point of care. Sci Transl Med. 2015;7(273):273re1-re1.

    Article  Google Scholar 

  79. Yu H, Tan Y, Cunningham BT. Smartphone fluorescence spectroscopy. Anal Chem. 2014;86(17):8805–13.

    Article  Google Scholar 

  80. Mao X, Huang TJ. Microfluidic diagnostics for the developing world. Lab Chip. 2012;12(8):1412–6.

    Article  Google Scholar 

  81. Li X, Ballerini DR, Shen W. A perspective on paper-based microfluidics: current status and future trends. Biomicrofluidics. 2012;6(1):11301–1130113.

    Article  Google Scholar 

  82. Hu J, Wang S, Wang L, Li F, Pingguan-Murphy B, Lu TJ, et al. Advances in paper-based point-of-care diagnostics. Biosens Bioelectron. 2014;54:585–97.

    Article  Google Scholar 

  83. Pelton R. Bioactive paper provides a low-cost platform for diagnostics. Trends Anal Chem. 2009;28(8):925–42.

    Article  Google Scholar 

  84. Fernandez-Sanchez C, McNeil CJ, Rawson K, Nilsson O, Leung HY, Gnanapragasam V. One-step immunostrip test for the simultaneous detection of free and total prostate specific antigen in serum. J Immunol Methods. 2005;307(1–2):1–12.

    Article  Google Scholar 

  85. Dineva MA, Candotti D, Fletcher-Brown F, Allain JP, Lee H. Simultaneous visual detection of multiple viral amplicons by dipstick assay. J Clin Microbiol. 2005;43(8):4015–21.

    Article  Google Scholar 

  86. Posthuma-Trumpie GA, Korf J, van Amerongen A. Lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats. A literature survey. Anal Bioanal Chem. 2009;393(2):569–82.

    Article  Google Scholar 

  87. Yang Q, Gong X, Song T, Yang J, Zhu S, Li Y, et al. Quantum dot-based immunochromatography test strip for rapid, quantitative and sensitive detection of alpha fetoprotein. Biosens Bioelectron. 2011;30(1):145–50.

    Article  Google Scholar 

  88. van den Berk GE, Frissen PH, Regez RM, Rietra PJ. Evaluation of the rapid immunoassay determine HIV 1/2 for detection of antibodies to human immunodeficiency virus types 1 and 2. J Clin Microbiol. 2003;41(8):3868–9.

    Article  Google Scholar 

  89. Mao X, Ma Y, Zhang A, Zhang L, Zeng L, Liu G. Disposable nucleic acid biosensors based on gold nanoparticle probes and lateral flow strip. Anal Chem. 2009;81(4):1660–8.

    Article  Google Scholar 

  90. Nilghaz A, Wicaksono DH, Gustiono D, Majid FAA, Supriyanto E, Kadir MRA. Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique. Lab Chip. 2012;12(1):209–18.

    Article  Google Scholar 

  91. Martinez AW, Phillips ST, Whitesides GM, Carrilho E. Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem. 2009;82(1):3–10.

    Article  Google Scholar 

  92. Martinez AW, Phillips ST, Whitesides GM. Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc Natl Acad Sci. 2008;105(50):19606–11.

    Article  Google Scholar 

  93. Cheng CM, Martinez AW, Gong J, Mace CR, Phillips ST, Carrilho E, et al. Paper-based ELISA. Angew Chem Int Ed Eng. 2010;49(28):4771–4.

    Article  Google Scholar 

  94. Apilux A, Ukita Y, Chikae M, Chailapakul O, Takamura Y. Development of automated paper-based devices for sequential multistep sandwich enzyme-linked immunosorbent assays using inkjet printing. Lab Chip. 2013;13(1):126–35.

    Article  Google Scholar 

  95. Nie Z, Deiss F, Liu X, Akbulut O, Whitesides GM. Integration of paper-based microfluidic devices with commercial electrochemical readers. Lab Chip. 2010;10(22):3163–9.

    Article  Google Scholar 

  96. Lu J, Ge S, Ge L, Yan M, Yu J. Electrochemical DNA sensor based on three-dimensional folding paper device for specific and sensitive point-of-care testing. Electrochim Acta. 2012;80:334–41.

    Article  Google Scholar 

  97. Parolo C, de la Escosura-Muniz A, Merkoci A. Enhanced lateral flow immunoassay using gold nanoparticles loaded with enzymes. Biosens Bioelectron. 2013;40(1):412–6.

    Article  Google Scholar 

  98. Hu J, Wang L, Li F, Han YL, Lin M, Lu TJ, et al. Oligonucleotide-linked gold nanoparticle aggregates for enhanced sensitivity in lateral flow assays. Lab Chip. 2013;13(22):4352–7.

    Article  Google Scholar 

  99. Vella SJ, Beattie P, Cademartiri R, Laromaine A, Martinez AW, Phillips ST, et al. Measuring markers of liver function using a micropatterned paper device designed for blood from a fingerstick. Anal Chem. 2012;84(6):2883–91.

    Article  Google Scholar 

  100. Pollock NR, Rolland JP, Kumar S, Beattie PD, Jain S, Noubary F, et al. A paper-based multiplexed transaminase test for low-cost, point-of-care liver function testing. Sci Transl Med. 2012;4(152):152ra29.

    Article  Google Scholar 

  101. Yang X, Forouzan O, Brown TP, Shevkoplyas SS. Integrated separation of blood plasma from whole blood for microfluidic paper-based analytical devices. Lab Chip. 2012;12(2):274–80.

    Article  Google Scholar 

  102. Ge C, Yu L, Fang Z, Zeng L. An enhanced strip biosensor for rapid and sensitive detection of histone methylation. Anal Chem. 2013;85(19):9343–9.

    Article  Google Scholar 

  103. Nie Z, Nijhuis CA, Gong J, Chen X, Kumachev A, Martinez AW, et al. Electrochemical sensing in paper-based microfluidic devices. Lab Chip. 2010;10(4):477–83.

    Article  Google Scholar 

  104. Turner AP. Biosensors: sense and sensibility. Chem Soc Rev. 2013;42(8):3184–96.

    Article  Google Scholar 

  105. Piccolo Xpress. http://www.abaxis.com/medical/piccolo-xpress. Accessed 30 Dec 2017.

  106. https://www.gyrosproteintechnologies.com/gyrolab-immunoassay-products. Accessed 30 Dec 2017.

  107. Gorkin R, Park J, Siegrist J, Amasia M, Lee BS, Park JM, et al. Centrifugal microfluidics for biomedical applications. Lab Chip. 2010;10(14):1758–73.

    Article  Google Scholar 

  108. Beaudet L, Rodriguez-Suarez R, Venne M-H, Caron M, Bédard J, Brechler V, et al. AlphaLISA immunoassays: the no-wash alternative to ELISAs for research and drug discovery. Nat Methods. 2008;5(12).

    Article  Google Scholar 

  109. Kai J, Puntambekar A, Santiago N, Lee SH, Sehy DW, Moore V, et al. A novel microfluidic microplate as the next generation assay platform for enzyme linked immunoassays (ELISA). Lab Chip. 2012;12(21):4257–62.

    Article  Google Scholar 

  110. MSD Technology Platform. https://www.mesoscale.com/~/media/files/brochures/techbrochure.pdf. Accessed 30 Dec 2017.

  111. Vashist SK, Czilwik G, Venkatesh AG. Elisa system and related methods. WIPO Patent Pub No WO/2014/198836.

    Google Scholar 

  112. Vashist SK, Czilwik G, van Oordt T, von Stetten F, Zengerle R, Marion Schneider E, et al. One-step kinetics-based immunoassay for the highly sensitive detection of C-reactive protein in less than 30min. Anal Biochem. 2014;456:32–7.

    Article  Google Scholar 

  113. Then WL, Garnier G. Paper diagnostics in biomedicine. Rev Anal Chem. 2013;32(4):269–94.

    Article  Google Scholar 

  114. Jahanshahi-Anbuhi S, Pennings K, Leung V, Liu M, Carrasquilla C, Kannan B, et al. Pullulan encapsulation of labile biomolecules to give stable bioassay tablets. Angew Chem Int Ed Eng. 2014;53(24):6155–8.

    Article  Google Scholar 

  115. Ramachandran S, Fu E, Lutz B, Yager P. Long-term dry storage of an enzyme-based reagent system for ELISA in point-of-care devices. Analyst. 2014;139(6):1456–62.

    Article  Google Scholar 

  116. Dawson EC, Homan JD, Van Weemen BK. Stabilization of peroxidase. US Patent 4331761.

    Google Scholar 

  117. Bioanalytical Method Validation. https://www.fda.gov/downloads/drugs/guidances/ucm368107.pdf. Accessed 30 Dec 2017.

  118. Guideline on Bioanalytical Method Validation. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2011/08/WC500109686.pdf. Accessed 30 Dec 2017.

  119. Abe K, Kotera K, Suzuki K, Citterio D. Inkjet-printed paperfluidic immuno-chemical sensing device. Anal Bioanal Chem. 2010;398(2):885–93.

    Article  Google Scholar 

  120. Li CZ, Vandenberg K, Prabhulkar S, Zhu X, Schneper L, Methee K, et al. Paper based point-of-care testing disc for multiplex whole cell bacteria analysis. Biosens Bioelectron. 2011;26(11):4342–8.

    Article  Google Scholar 

  121. Vashist SK, Venkatesh A, Mitsakakis K, Czilwik G, Roth G, von Stetten F, et al. Nanotechnology-based biosensors and diagnostics: technology push versus industrial/healthcare requirements. Bionanoscience. 2012;2(3):115–26.

    Article  Google Scholar 

  122. Sharifi S, Behzadi S, Laurent S, Forrest ML, Stroeve P, Mahmoudi M. Toxicity of nanomaterials. Chem Soc Rev. 2012;41(6):2323–43.

    Article  Google Scholar 

  123. Pearson S, Benameur A, editors. Privacy, security and trust issues arising from cloud computing. IEEE Sec Int Conf Cloud Comput Technol Sci (CloudCom). 2010;2010:693–702. https://doi.org/10.1109/CloudCom.2010.66.

  124. Subashini S, Kavitha V. A survey on security issues in service delivery models of cloud computing. JNCA. 2011;34(1):1–11.

    Google Scholar 

  125. Chen D, Zhao H, editors. Data security and privacy protection issues in cloud computing. Int Conf Comp Sci Electron Eng. 2012;2012:647–51. https://doi.org/10.1109/ICCSEE.2012.193.

  126. Yu S, Wang C, Ren K, Lou W, editors. Achieving secure, scalable, and fine-grained data access control in cloud computing. Proc IEEE Infocom. 2010;2010:1–9. https://doi.org/10.1109/INFCOM.2010.5462174.

  127. Junker R, Schlebusch H, Luppa PB. Point-of-care testing in hospitals and primary care. Dtsch Arztebl Int. 2010;107(33):561–7.

    Google Scholar 

  128. Weisbrod BA. The health care quadrilemma: an essay on technological change, insurance, quality of care, and cost containment. J Econ Lit. 1991;29(2):523–52.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vashist, S.K., Luong, J.H.T. (2019). An Overview of Point-of-Care Technologies Enabling Next-Generation Healthcare Monitoring and Management. In: Point-of-Care Technologies Enabling Next-Generation Healthcare Monitoring and Management. Springer, Cham. https://doi.org/10.1007/978-3-030-11416-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11416-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11415-2

  • Online ISBN: 978-3-030-11416-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics