Skip to main content

Model for Improved Load Balancing in Volunteer Computing Platforms

  • Conference paper
  • First Online:
Information Systems (EMCIS 2018)

Abstract

Distributed computational platforms, especially volunteer based ones, become popular over the past decades due to the cheap access to resources. The majority of these Volunteer Computing (VC) platforms are based on client-server architecture, therefore susceptible to server-side bottlenecks and delays in project completion due to lost Workload Units (WU). This paper presents a new model for a computing platform that offloads the tasks of WU creation from centralized servers to the network nodes and with the use of a remote checkpoint system, it can re-create lost WUs from failed or unavailable nodes. With these improvements, it can achieve better scaling and load balancing, and due to the checkpoints, only a limited amount of computation is lost due to node failure. Simulation results of the model’s behavior are also present and interpreted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alonso-Monsalve, S., Garcia-Carballeira, F., Calderón, A.: A new volunteer computing model for data-intensive applications. Concurrency Comput.: Pract. Exp. 29(24) (2017). https://doi.org/10.1002/cpe.4198

    Article  Google Scholar 

  2. Anderson, D.P.: Boinc: a system for public-resource computing and storage. In: Proceedings of the 5th IEEE/ACM International Workshop, Pittsburgh, USA, pp. 4–10. IEEE Computer Society (2004)

    Google Scholar 

  3. Beverly Yang, B., Garcia-Molina, H.: Designing a super-peer network. In: Proceedings 19th International Conference on Data Engineering, Bangalore, India, pp. 49–60. IEEE (2003). https://doi.org/10.1109/ICDE.2003.1260781

  4. Bruno, R., Ferreira, P.: Freecycles: efficient data distribution for volunteer computing. In: Proceedings of the Fourth International Workshop on Cloud Data and Platforms, Amsterdam, Netherlands, pp. 1–6. ACM (2014)

    Google Scholar 

  5. Costa, F., Silva, L., Kelley, I., Taylor, I.: Peer-to-peer techniques for data distribution in desktop grid computing platforms. In: Danelutto, M., Fragopoulou, P., Getov, V. (eds.) Making Grids Work, pp. 377–391. Springer, Boston (2008). https://doi.org/10.1007/978-0-387-78448-9_30

    Chapter  Google Scholar 

  6. Czarnul, P., Kuchta, J., Matuszek, M.: Parallel computations in the volunteer–based comcute system. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2013. LNCS, vol. 8384, pp. 261–271. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55224-3_25

    Chapter  Google Scholar 

  7. Demers, A., et al.: Epidemic algorithms for replicated database maintenance. In: Proceedings of the Sixth Annual ACM Symposium on Principles of Distributed Computing, pp. 1–12. ACM, New York (1987) https://doi.org/10.1145/41840.41841

  8. Elwaer, A., Taylor, I., Rana, O.: Optimizing data distribution in volunteer computing systems using resources of participants. Scalable Comput.: Pract. Exp. 12, 193–208 (2011)

    Google Scholar 

  9. Kapoor, H., Mehta, K., Puri, D., Saxena, S.: Survey of various search mechanisms in unstructured peer-to-peer networks. Int. J. Comput. Appl. 68(6), 21–25 (2013). https://doi.org/10.5120/11584-6917

    Article  Google Scholar 

  10. Muratat, Y., Inabatt, T., Takizawat, H., Kobayashi, H.: Implementation and evaluation of a distributed and cooperative load-balancing mechanism for dependable volunteer computing. In: International Conference on Dependable Systems & Networks: Anchorage, Alaska, USA, pp. 316–325. IEEE (2008)

    Google Scholar 

  11. Priyanka, C., Deeba, K.: A comparative study on optimization of search in overlay networks. Int. J. Comput. Sci. Mob. Appl. 1(4), 34–38 (2013)

    Google Scholar 

  12. Ripeanu, M.: Peer-to-peer architecture case study: Gnutella network. In: Proceedings First International Conference on Peer-to-Peer Computing, Linkoping, Sweden, pp. 99–100. IEEE (2001)

    Google Scholar 

  13. Sarmenta, L.F.: Volunteer computing. Ph.D. thesis, Massachusetts Institute of Technology (2001)

    Google Scholar 

  14. Ye, F., Zuo, F., Zhang, S.: Routing Algorithm Based on Gnutella Model. In: Cai, Z., Li, Z., Kang, Z., Liu, Y. (eds.) ISICA 2009. CCIS, vol. 51, pp. 9–15. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04962-0_2

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by the Collegium Talentum 2017 Programme of Hungary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Levente Filep .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Filep, L. (2019). Model for Improved Load Balancing in Volunteer Computing Platforms. In: Themistocleous, M., Rupino da Cunha, P. (eds) Information Systems. EMCIS 2018. Lecture Notes in Business Information Processing, vol 341. Springer, Cham. https://doi.org/10.1007/978-3-030-11395-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11395-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11394-0

  • Online ISBN: 978-3-030-11395-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics