Skip to main content

Molecular Predictors of Clinical Behavior in Pituitary Adenohypophysial Tumors

  • Chapter
  • First Online:
Pituitary Disorders of Childhood

Part of the book series: Contemporary Endocrinology ((COE))

  • 540 Accesses

Abstract

Pituitary adenohypophysial tumors range from small indolent incidental findings to progressive neoplasms that invade the base of the brain. This chapter focuses on biomarkers that have been examined to help distinguish between these differing behaviors. This is particularly relevant in childhood cases where treatment and surveillance plans can have far-reaching implications. We review the familial syndromes that predispose to tumor development. We emphasize the histological subtypes that can be diagnosed using morphologic and immunophenotyping techniques. We then review candidate biomarkers including proliferation markers, metalloproteinases, growth factors and their receptors, as well as hormone and cytokine receptors. We conclude with larger chromosomal aberrations and microRNAs that have been implicated in epigenetic dysregulation. These data provide an integrated approach to formulate a risk stratification system for patients with pituitary tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ezzat S, Asa SL, Couldwell WT, et al. The prevalence of pituitary adenomas: a systematic review. Cancer. 2004;101(3):613–9.

    Article  PubMed  Google Scholar 

  2. Daly AF, Rixhon M, Adam C, Dempegioti A, Tichomirowa MA, Beckers A. High prevalence of pituitary adenomas: a cross-sectional study in the province of Liege. Belgium J Clin Endocrinol Metab. 2006;91(12):4769–75.

    Article  CAS  PubMed  Google Scholar 

  3. Fernandez A, Karavitaki N, Wass JA. Prevalence of pituitary adenomas: a community-based, cross-sectional study in Banbury (Oxfordshire, UK). Clin Endocrinol. 2010;72(3):377–82.

    Article  Google Scholar 

  4. Asa SL, Casar-Borota O, Chanson P, et al. From pituitary adenoma to pituitary neuroendocrine tumor (PitNET): an International Pituitary Pathology Club proposal. Endocr Relat Cancer. 2017;24(4):C5–8.

    Article  CAS  PubMed  Google Scholar 

  5. Asa SL, Ezzat S. Aggressive pituitary tumors or localized pituitary carcinomas: defining pituitary tumors. Expert Rev Endocrinol Metab. 2016;11(2):149–62.

    Article  CAS  PubMed  Google Scholar 

  6. DeLellis RA, Lloyd RV, Heitz PU, Eng C. Pathology and genetics of tumours of endocrine organs. Lyons: IARC Press; 2004.

    Google Scholar 

  7. Lloyd RV, Osamura RY, Kloppel G, Rosai J. WHO Classification of Tumours of Endocrine Organs (4th edition), Lyon, IARC Press; 2017.

    Google Scholar 

  8. Miermeister CP, Petersenn S, Buchfelder M, et al. Histological criteria for atypical pituitary adenomas – data from the German pituitary adenoma registry suggests modifications. Acta Neuropathol Commun. 2015;3:50.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Wierinckx A, Auger C, Devauchelle P, et al. A diagnostic marker set for invasion, proliferation, and aggressiveness of prolactin pituitary tumors. Endocr Relat Cancer. 2007;14(3):887–900.

    Article  CAS  PubMed  Google Scholar 

  10. Lyssikatos C, Fauez FR, Stratakis CA. Familial endocrine tumor syndromes. In: Mete O, Asa SL, editors. Endocrine pathology. Cambridge: Cambridge University Press; 2016. p. 56–70.

    Google Scholar 

  11. Scheithauer BW, Laws ER Jr, Kovacs K, Horvath E, Randall RV, Carney JA. Pituitary adenomas of the multiple endocrine neoplasia type I syndrome. Semin Diagn Pathol. 1987;4(3):205–11.

    CAS  PubMed  Google Scholar 

  12. Lee M, Pellegata NS. Multiple endocrine neoplasia type 4. Front Horm Res. 2013;41:63–78.

    Article  CAS  PubMed  Google Scholar 

  13. Chandrasekharappa SC, Guru SC, Manickam P, et al. Positional cloning of the gene for multiple endocrine neoplasia-type 1. Science. 1997;276:404–7.

    Article  CAS  PubMed  Google Scholar 

  14. Zhuang Z, Ezzat S, Vortmeyer AO, et al. Mutations of the MEN1 tumor suppressor gene in pituitary tumors. Cancer Res. 1997;57:5446–51.

    CAS  PubMed  Google Scholar 

  15. Pellegata NS, Quintanilla-Martinez L, Siggelkow H, et al. Germ-line mutations in p27Kip1 cause a multiple endocrine neoplasia syndrome in rats and humans. Proc Natl Acad Sci U S A. 2006;103(42):15558–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Georgitsi M, Raitila A, Karhu A, et al. Germline CDKN1B/p27Kip1 mutation in multiple endocrine neoplasia. J Clin Endocrinol Metab. 2007;92(8):3321–5.

    Article  CAS  PubMed  Google Scholar 

  17. Georgitsi M. MEN-4 and other multiple endocrine neoplasias due to cyclin-dependent kinase inhibitors (p27(Kip1) and p18(INK4C)) mutations. Best Pract Res Clin Endocrinol Metab. 2010;24(3):425–37.

    Article  CAS  PubMed  Google Scholar 

  18. Verges B, Boureille F, Goudet P, et al. Pituitary disease in MEN type 1 (MEN1): data from the France-Belgium MEN1 multicenter study. J Clin Endocrinol Metab. 2002;87(2):457–65.

    Article  CAS  PubMed  Google Scholar 

  19. Sandrini F, Kirschner LS, Bei T, et al. PRKAR1A, one of the Carney complex genes, and its locus (17q22-24) are rarely altered in pituitary tumours outside the Carney complex. J Med Genet. 2002;39(12):e78.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Vierimaa O, Georgitsi M, Lehtonen R, et al. Pituitary adenoma predisposition caused by germline mutations in the AIP gene. Science. 2006;312(5777):1228–30.

    Article  CAS  PubMed  Google Scholar 

  21. Daly AF, Tichomirowa MA, Petrossians P, et al. Clinical characteristics and therapeutic responses in patients with germ-line AIP mutations and pituitary adenomas: an international collaborative study. J Clin Endocrinol Metab. 2010;95(11):E373–83.

    Article  PubMed  Google Scholar 

  22. Tahir A, Chahal HS, Korbonits M. Molecular genetics of the aip gene in familial pituitary tumorigenesis. Prog Brain Res. 2010;182:229–53.

    Article  CAS  PubMed  Google Scholar 

  23. Beckers A, Daly AF. The clinical, pathological, and genetic features of familial isolated pituitary adenomas. Eur J Endocrinol. 2007;157(4):371–82.

    Article  CAS  PubMed  Google Scholar 

  24. Beckers A, Aaltonen LA, Daly AF, Karhu A. Familial isolated pituitary adenomas (FIPA) and the pituitary adenoma predisposition due to mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene. Endocr Rev. 2013;34(2):239–77.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Georgitsi M, De Menis E, Cannavo S, et al. Aryl hydrocarbon receptor interacting protein (AIP) gene mutation analysis in children and adolescents with sporadic pituitary adenomas. Clin Endocrinol. 2008;69(4):621–7.

    Article  CAS  Google Scholar 

  26. Denes J, Kasuki L, Trivellin G, et al. Regulation of aryl hydrocarbon receptor interacting protein (AIP) protein expression by MiR-34a in sporadic somatotropinomas. PLoS One. 2015;10(2):e0117107.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Preda V, Korbonits M, Cudlip S, Karavitaki N, Grossman AB. Low rate of germline AIP mutations in patients with apparently sporadic pituitary adenomas before the age of 40: a single-centre adult cohort. Eur J Endocrinol. 2014;171(5):659–66.

    Article  CAS  PubMed  Google Scholar 

  28. Martucci F, Trivellin G, Korbonits M. Familial isolated pituitary adenomas: an emerging clinical entity. J Endocrinol Investig. 2012;35(11):1003–14.

    Article  CAS  Google Scholar 

  29. Xekouki P, Stratakis CA. Succinate dehydrogenase (SDHx) mutations in pituitary tumors: could this be a new role for mitochondrial complex II and/or Krebs cycle defects? Endocr Relat Cancer. 2012;19(6):C33–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Papathomas TG, Gaal J, Corssmit EP, et al. Non-pheochromocytoma (PCC)/paraganglioma (PGL) tumors in patients with succinate dehydrogenase-related PCC-PGL syndromes: a clinicopathological and molecular analysis. Eur J Endocrinol. 2014;170(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  31. Tufton N, Roncaroli F, Hadjidemetriou I, et al. Pituitary carcinoma in a patient with an SDHB mutation. Endocr Pathol. 2017;28(4):320–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Trivellin G, Daly AF, Faucz FR, et al. Gigantism and acromegaly due to Xq26 microduplications and GPR101 mutation. N Engl J Med. 2014;371(25):2363–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Asa SL. Tumors of the pituitary gland. AFIP atlas of tumor pathology, series 4, Fascicle 15, Silverberg SG, editor. Silver Spring: ARP Press; 2011.

    Google Scholar 

  34. Mete O, Ezzat S, Asa SL. Biomarkers of aggressive pituitary adenomas. J Mol Endocrinol. 2012;49(2):R69–78.

    Article  CAS  PubMed  Google Scholar 

  35. Mete O, Asa SL. Clinicopathological correlations in pituitary adenomas. Brain Pathol. 2012;22(4):443–53.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Asa SL, Ezzat S. The pathogenesis of pituitary tumors. Annu Rev Pathol. 2009;4:97–126.

    Article  CAS  PubMed  Google Scholar 

  37. Mete O, Gomez-Hernandez K, Kucharczyk W, et al. Silent subtype 3 pituitary adenomas are not always silent and represent poorly differentiated monomorphous plurihormonal Pit-1 lineage adenomas. Mod Pathol. 2016;29(2):131–42.

    Article  CAS  PubMed  Google Scholar 

  38. Huang C, Ezzat S, Asa SL, Hamilton J. Dopaminergic resistant prolactinomas in the peripubertal population. J Pediatr Endocrinol Metab. 2006;19(7):951–3.

    Article  PubMed  Google Scholar 

  39. Pereira BD, Raimundo L, Mete O, Oliveira A, Portugal J, Asa SL. Monomorphous plurihormonal pituitary adenoma of pit-1 lineage in a giant adolescent with central hyperthyroidism. Endocr Pathol. 2016;27(1):25–33.

    Article  PubMed  Google Scholar 

  40. Hyrcza MD, Ezzat S, Mete O, Asa SL. Pituitary adenomas presenting as sinonasal or nasopharyngeal masses: a case series illustrating potential diagnostic pitfalls. Am J Surg Pathol. 2017;41(4):525–34.

    Article  PubMed  Google Scholar 

  41. Thompson LD, Seethala RR, Muller S. Ectopic sphenoid sinus pituitary adenoma (ESSPA) with normal anterior pituitary gland: a clinicopathologic and immunophenotypic study of 32 cases with a comprehensive review of the English literature. Head Neck Pathol. 2012;6(1):75–100.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Salehi F, Agur A, Scheithauer BW, Kovacs K, Lloyd RV, Cusimano M. Biomarkers of pituitary neoplasms: a review (part II). Neurosurgery. 2010;67(6):1790–8.

    Article  PubMed  Google Scholar 

  43. McCabe CJ, Khaira JS, Boelaert K, et al. Expression of pituitary tumour transforming gene (PTTG) and fibroblast growth factor-2 (FGF-2) in human pituitary adenomas: relationships to clinical tumour behaviour. Clin Endocrinol. 2003;58(2):141–50.

    Article  CAS  Google Scholar 

  44. McCabe CJ, Boelaert K, Tannahill LA, et al. Vascular endothelial growth factor, its receptor KDR/Flk-1, and pituitary tumor transforming gene in pituitary tumors. J Clin Endocrinol Metab. 2002;87(9):4238–44.

    Article  CAS  PubMed  Google Scholar 

  45. Ezzat S, Zheng L, Asa SL. Pituitary tumor-derived fibroblast growth factor receptor 4 isoform disrupts neural cell-adhesion molecule/N-cadherin signaling to diminish cell adhesiveness: a mechanism underlying pituitary neoplasia. Mol Endocrinol. 2004;18(10):2543–52.

    Article  CAS  PubMed  Google Scholar 

  46. Asa SL, Ezzat S. Molecular basis of pituitary development and cytogenesis. Front Horm Res. 2004;32:1–19.

    Article  CAS  PubMed  Google Scholar 

  47. Gong J, Zhao Y, Abdel-Fattah R, et al. Matrix metalloproteinase-9, a potential biological marker in invasive pituitary adenomas. Pituitary. 2008;11(1):37–48.

    Article  CAS  PubMed  Google Scholar 

  48. Salehi F, Agur A, Scheithauer BW, Kovacs K, Lloyd RV, Cusimano M. Ki-67 in pituitary neoplasms: a review – part I. Neurosurgery. 2009;65(3):429–37.

    Article  PubMed  Google Scholar 

  49. Wierinckx A, Roche M, Raverot G, et al. Integrated genomic profiling identifies loss of chromosome 11p impacting transcriptomic activity in aggressive pituitary PRL tumors. Brain Pathol. 2011;21(5):533–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Cornelius A, Cortet-Rudelli C, Assaker R, et al. Endothelial expression of endocan is strongly associated with tumor progression in pituitary adenoma. Brain Pathol. 2012;22(6):757–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang H, Li WS, Shi DJ, et al. Correlation of MMP(1) and TIMP (1) expression with pituitary adenoma fibrosis. J Neuro-Oncol. 2008;90(2):151–6.

    Article  CAS  Google Scholar 

  52. Sivapragasam M, Rotondo F, Lloyd RV, et al. MicroRNAs in the human pituitary. Endocr Pathol. 2011;22(3):134–43.

    Article  CAS  PubMed  Google Scholar 

  53. Bosman FT, Carneiro F, Hruban RH, Teiise ND. WHO classification of Tumours of the gastrointestinal tract. IARC, editor. [3]. Lyons; 2010.

    Google Scholar 

  54. Landolt AM, Shibata T, Kleihues P. Growth rate of human pituitary adenomas. J Neurosurg. 1987;67:803–6.

    Article  CAS  PubMed  Google Scholar 

  55. Thapar K, Kovacs K, Scheithauer BW, et al. Proliferative activity and invasiveness among pituitary adenomas and carcinomas: an analysis using the MIB-1 antibody. Neurosurgery. 1996;38:99–107.

    Article  CAS  PubMed  Google Scholar 

  56. Daita G, Yonemasu Y. Dural invasion and proliferative potential of pituitary adenomas. Neurol Med Chir (Tokyo). 1996;36(4):211–4.

    Article  CAS  Google Scholar 

  57. Zhao D, Tomono Y, Nose T. Expression of P27kip1 and Ki-67 in pituitary adenomas: an investigation of marker of adenoma invasiveness. Acta Neurochir. 1999;141(2):187–92.

    Article  CAS  PubMed  Google Scholar 

  58. Iuchi T, Saeki N, Osato K, Yamaura A. Proliferation, vascular endothelial growth factor expression and cavernous sinus invasion in growth hormone secreting pituitary adenomas. Acta Neurochir. 2000;142(12):1345–51.

    Article  CAS  PubMed  Google Scholar 

  59. Jaffrain-Rea ML, Di SD, Minniti G, et al. A critical reappraisal of MIB-1 labelling index significance in a large series of pituitary tumours: secreting versus non-secreting adenomas. Endocr Relat Cancer. 2002;9(2):103–13.

    Article  CAS  PubMed  Google Scholar 

  60. Wolfsberger S, Wunderer J, Zachenhofer I, et al. Expression of cell proliferation markers in pituitary adenomas – correlation and clinical relevance of MIB-1 and anti-topoisomerase-IIalpha. Acta Neurochir. 2004;146(8):831–9.

    Article  CAS  PubMed  Google Scholar 

  61. Hentschel SJ, McCutcheon I, Moore W, Durity FA. P53 and MIB-1 immunohistochemistry as predictors of the clinical behavior of nonfunctioning pituitary adenomas. Can J Neurol Sci. 2003;30(3):215–9.

    Article  PubMed  Google Scholar 

  62. Yonezawa K, Tamaki N, Kokunai T. Clinical features and growth fractions of pituitary adenomas. Surg Neurol. 1997;48(5):494–500.

    Article  CAS  PubMed  Google Scholar 

  63. Lath R, Chacko G, Chandy MJ. Determination of Ki-67 labeling index in pituitary adenomas using MIB-1 monoclonal antibody. Neurol India. 2001;49(2):144–7.

    CAS  PubMed  Google Scholar 

  64. Paek KI, Kim SH, Song SH, et al. Clinical significance of Ki-67 labeling index in pituitary macroadenoma. J Korean Med Sci. 2005;20(3):489–94.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Pan LX, Chen ZP, Liu YS, Zhao JH. Magnetic resonance imaging and biological markers in pituitary adenomas with invasion of the cavernous sinus space. J Neuro-Oncol. 2005;74(1):71–6.

    Article  Google Scholar 

  66. Wierzbicka-Tutka I, Sokolowski G, Baldys-Waligorska A, Adamek D, Radwanska E, Golkowski F. PTTG and Ki-67 expression in pituitary adenomas. Przegl Lek. 2016;73(2):53–8.

    PubMed  Google Scholar 

  67. Chiloiro S, Doglietto F, Trapasso B, et al. Typical and atypical pituitary adenomas: a single-center analysis of outcome and prognosis. Neuroendocrinology. 2015;101(2):143–50.

    Article  CAS  PubMed  Google Scholar 

  68. Pizarro CB, Oliveira MC, Coutinho LB, Ferreira NP. Measurement of Ki-67 antigen in 159 pituitary adenomas using the MIB-1 monoclonal antibody. Braz J Med Biol Res. 2004;37(2):235–43.

    Article  CAS  PubMed  Google Scholar 

  69. Papathomas TG, Pucci E, Giordano TJ, et al. An international Ki67 reproducibility study in adrenal cortical carcinoma. Am J Surg Pathol. 2016;40(4):569–76.

    Article  PubMed  Google Scholar 

  70. Singh S, Hallet J, Rowsell C, Law CH. Variability of Ki67 labeling index in multiple neuroendocrine tumors specimens over the course of the disease. Eur J Surg Oncol. 2014;40(11):1517–22.

    Article  CAS  PubMed  Google Scholar 

  71. Tang LH, Gonen M, Hedvat C, Modlin IM, Klimstra DS. Objective quantification of the Ki67 proliferative index in neuroendocrine tumors of the gastroenteropancreatic system: a comparison of digital image analysis with manual methods. Am J Surg Pathol. 2012;36(12):1761–70.

    Article  PubMed  Google Scholar 

  72. Focke CM, Burger H, van Diest PJ, et al. Interlaboratory variability of Ki67 staining in breast cancer. Eur J Cancer. 2017;84:219–27.

    Article  CAS  PubMed  Google Scholar 

  73. Pei L, Melmed S. Isolation and characterization of a pituitary tumor-transforming gene (PTTG). Mol Endocrinol. 1997;11:433–41.

    Article  CAS  PubMed  Google Scholar 

  74. Zou H, McGarry TJ, Bernal T, Kirschner MW. Identification of a vertebrate sister-chromatid separation inhibitor involved in transformation and tumorigenesis. Science. 1999;285(5426):418–22.

    Article  CAS  PubMed  Google Scholar 

  75. Salehi F, Kovacs K, Scheithauer BW, et al. Immunohistochemical expression of pituitary tumor transforming gene (PTTG) in pituitary adenomas: a correlative study of tumor subtypes. Int J Surg Pathol. 2010;18(1):5–13.

    Article  PubMed  Google Scholar 

  76. Filippella M, Galland F, Kujas M, et al. Pituitary tumour transforming gene (PTTG) expression correlates with the proliferative activity and recurrence status of pituitary adenomas: a clinical and immunohistochemical study. Clin Endocrinol. 2006;65(4):536–43.

    Article  Google Scholar 

  77. Hunter JA, Skelly RH, Aylwin SJ, et al. The relationship between pituitary tumour transforming gene (PTTG) expression and in vitro hormone and vascular endothelial growth factor (VEGF) secretion from human pituitary adenomas. Eur J Endocrinol. 2003;148(2):203–11.

    Article  CAS  PubMed  Google Scholar 

  78. Chen BT, Jain AB, Dagis A, et al. Comparison of the efficacy and safety of ultrasound-guided core needle biopsy versus fine-needle aspiration for evaluating thyroid nodules. Endocr Pract. 2015;21(2):128–35.

    Article  PubMed  Google Scholar 

  79. Sumi T, Stefaneanu L, Kovacs K, Asa SL, Rindi G. Immunohistochemical study of p53 protein in human and animal pituitary tumors. Endocr Pathol. 1993;4:95–9.

    Article  PubMed  Google Scholar 

  80. Levy A, Hall L, Yeundall WA, Lightman SL. p53 gene mutations in pituitary adenomas: rare events. Clin Endocrinol. 1994;41:809–14.

    Article  CAS  Google Scholar 

  81. Thapar K, Scheithauer BW, Kovacs K, Pernicone PJ, Laws ER Jr. p53 expression in pituitary adenomas and carcinomas: correlation with invasiveness and tumor growth fractions. Neurosurgery. 1996;38:765–71.

    Article  CAS  PubMed  Google Scholar 

  82. Ozer E, Canda MS, Ulukus C, Guray M, Erbayraktar S. Expression of Bcl-2, Bax and p53 proteins in pituitary adenomas: an immunohistochemical study. Tumori. 2003;89(1):54–9.

    Article  PubMed  Google Scholar 

  83. Scheithauer BW, Gaffey TA, Lloyd RV, et al. Pathobiology of pituitary adenomas and carcinomas. Neurosurgery. 2006;59(2):341–53.

    Article  PubMed  Google Scholar 

  84. Suliman M, Royds J, Cullen D, et al. Mdm2 and the p53 pathway in human pituitary adenomas. Clin Endocrinol. 2001;54(3):317–25.

    Article  CAS  Google Scholar 

  85. Arakaki PA, Marques MR, Santos MC. MMP-1 polymorphism and its relationship to pathological processes. J Biosci. 2009;34(2):313–20.

    Article  CAS  PubMed  Google Scholar 

  86. Miyoshi A, Kitajima Y, Kido S, et al. Snail accelerates cancer invasion by upregulating MMP expression and is associated with poor prognosis of hepatocellular carcinoma. Br J Cancer. 2005;92(2):252–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Ota I, Li XY, Hu Y, Weiss SJ. Induction of a MT1-MMP and MT2-MMP-dependent basement membrane transmigration program in cancer cells by Snail1. Proc Natl Acad Sci U S A. 2009;106(48):20318–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Gonzalez-Arriaga P, Pascual T, Garcia-Alvarez A, Fernandez-Somoano A, Lopez-Cima MF, Tardon A. Genetic polymorphisms in MMP 2, 9 and 3 genes modify lung cancer risk and survival. BMC Cancer. 2012;12:121.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Wasylyk C, Gutman A, Nicholson R, Wasylyk B. The c-Ets oncoprotein activates the stromelysin promoter through the same elements as several non-nuclear oncoproteins. EMBO J. 1991;10(5):1127–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Sharrocks AD, Brown AL, Ling Y, Yates PR. The ETS-domain transcription factor family. Int J Biochem Cell Biol. 1997;29(12):1371–87.

    Article  CAS  PubMed  Google Scholar 

  91. Buttice G, Duterque-Coquillaud M, Basuyaux JP, Carrere S, Kurkinen M, Stehelin D. Erg, an Ets-family member, differentially regulates human collagenase1 (MMP1) and stromelysin1 (MMP3) gene expression by physically interacting with the Fos/Jun complex. Oncogene. 1996;13(11):2297–306.

    CAS  PubMed  Google Scholar 

  92. Westermarck J, Seth A, Kahari VM. Differential regulation of interstitial collagenase (MMP-1) gene expression by ETS transcription factors. Oncogene. 1997;14(22):2651–60.

    Article  CAS  PubMed  Google Scholar 

  93. Altas M, Bayrak OF, Ayan E, et al. The effect of polymorphisms in the promoter region of the MMP-1 gene on the occurrence and invasiveness of hypophyseal adenoma. Acta Neurochir. 2010;152(9):1611–7.

    Article  PubMed  Google Scholar 

  94. Mandal M, Mandal A, Das S, Chakraborti T, Sajal C. Clinical implications of matrix metalloproteinases. Mol Cell Biochem. 2003;252(1–2):305–29.

    Article  CAS  PubMed  Google Scholar 

  95. Kawamoto H, Kawamoto K, Mizoue T, Uozumi T, Arita K, Kurisu K. Matrix metalloproteinase-9 secretion by human pituitary adenomas detected by cell immunoblot analysis. Acta Neurochir. 1996;138(12):1442–8.

    Article  CAS  PubMed  Google Scholar 

  96. Liu W, Kunishio K, Matsumoto Y, Okada M, Nagao S. Matrix metalloproteinase-2 expression correlates with cavernous sinus invasion in pituitary adenomas. J Clin Neurosci. 2005;12(7):791–4.

    Article  CAS  PubMed  Google Scholar 

  97. Hussaini IM, Trotter C, Zhao Y, et al. Matrix metalloproteinase-9 is differentially expressed in nonfunctioning invasive and noninvasive pituitary adenomas and increases invasion in human pituitary adenoma cell line. Am J Pathol. 2007;170(1):356–65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  98. Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol. 2007;8(3):221–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Rowe RG, Weiss SJ. Navigating ECM barriers at the invasive front: the cancer cell-stroma interface. Annu Rev Cell Dev Biol. 2009;25:567–95.

    Article  CAS  PubMed  Google Scholar 

  100. Bange J, Prechtl D, Cheburkin Y, et al. Cancer progression and tumor cell motility are associated with the FGFR4 Arg(388) allele. Cancer Res. 2002;62(3):840–7.

    CAS  PubMed  Google Scholar 

  101. da Costa AV, Parise O Jr, Hors CP, de Melo Martins PC, Silva AP, Garicochea B. The fibroblast growth factor receptor 4 (FGFR4) Arg388 allele correlates with survival in head and neck squamous cell carcinoma. Exp Mol Pathol. 2007;82(1):53–7.

    Article  CAS  Google Scholar 

  102. Falvella FS, Frullanti E, Galvan A, et al. FGFR4 Gly388Arg polymorphism may affect the clinical stage of patients with lung cancer by modulating the transcriptional profile of normal lung. Int J Cancer. 2009;124(12):2880–5.

    Article  CAS  PubMed  Google Scholar 

  103. Frullanti E, Berking C, Harbeck N, et al. Meta and pooled analyses of FGFR4 Gly388Arg polymorphism as a cancer prognostic factor. Eur J Cancer Prev. 2011;20(4):340–7.

    Article  CAS  PubMed  Google Scholar 

  104. Sugiyama N, Varjosalo M, Meller P, et al. FGF receptor-4 (FGFR4) polymorphism acts as an activity switch of a membrane type 1 matrix metalloproteinase-FGFR4 complex. Proc Natl Acad Sci U S A. 2010;107(36):15786–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  105. Ezzat S, Walpola IA, Ramyar L, Smyth HS, Asa SL. Membrane-anchored expression of transforming growth factor-a in human pituitary adenoma cells. J Clin Endocrinol Metab. 1995;80:534–9.

    CAS  PubMed  Google Scholar 

  106. LeRiche V, Asa SL, Ezzat S. Epidermal growth factor and its receptor (EGF-R) in human pituitary adenomas: EGF-R correlates with tumor aggressiveness. J Clin Endocrinol Metab. 1996;81:656–62.

    CAS  PubMed  Google Scholar 

  107. Roh M, Paterson AJ, Asa SL, Chin E, Kudlow JE. Stage-sensitive blockade of pituitary somatomammotrope development by targeted expression of a dominant negative epidermal growth factor receptor in transgenic mice. Mol Endocrinol. 2001;15(4):600–13.

    Article  CAS  PubMed  Google Scholar 

  108. Hayashi K, Inoshita N, Kawaguchi K, et al. The USP8 mutational status may predict drug susceptibility in corticotroph adenomas of Cushing’s disease. Eur J Endocrinol. 2016;174(2):213–26.

    Article  CAS  PubMed  Google Scholar 

  109. Reincke M, Sbiera S, Hayakawa A, et al. Mutations in the deubiquitinase gene USP8 cause Cushing’s disease. Nat Genet. 2015;47(1):31–8.

    Article  CAS  PubMed  Google Scholar 

  110. Ma ZY, Song ZJ, Chen JH, et al. Recurrent gain-of-function USP8 mutations in Cushing’s disease. Cell Res. 2015;25(3):306–17.

    Google Scholar 

  111. Perez-Rivas LG, Theodoropoulou M, Ferrau F, et al. The gene of the ubiquitin-specific protease 8 is frequently mutated in adenomas causing Cushing’s disease. J Clin Endocrinol Metab. 2015;100(7):E997–1004.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  112. Cooper O, Vlotides G, Fukuoka H, Greene MI, Melmed S. Expression and function of ErbB receptors and ligands in the pituitary. Endocr Relat Cancer. 2011;18(6):R197–211.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  113. Liu X, Kano M, Araki T, et al. ErbB receptor-driven prolactinomas respond to targeted lapatinib treatment in female transgenic mice. Endocrinology. 2015;156(1):71–9.

    Article  PubMed  CAS  Google Scholar 

  114. Ezzat S, Smyth HS, Ramyar L, Asa SL. Heterogeneous in vivo and in vitro expression of basic fibroblast growth factor by human pituitary adenomas. J Clin Endocrinol Metab. 1995;80:878–84.

    CAS  PubMed  Google Scholar 

  115. Wesche J, Haglund K, Haugsten EM. Fibroblast growth factors and their receptors in cancer. Biochem J. 2011;437(2):199–213.

    Article  CAS  PubMed  Google Scholar 

  116. Tateno T, Asa SL, Zheng L, Mayr T, Ullrich A, Ezzat S. The FGFR4-G388R polymorphism promotes mitochondrial STAT3 serine phosphorylation to facilitate pituitary growth hormone cell tumorigenesis. PLoS Genet. 2011;7(12):e1002400.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  117. Nakano-Tateno T, Tateno T, Hlaing MM, et al. FGFR4 polymorphic variants modulate phenotypic features of Cushing disease. Mol Endocrinol. 2014;28(4):525–33.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  118. Daniel L, Trouillas J, Renaud W, et al. Polysialylated-neural cell adhesion molecule expression in rat pituitary transplantable tumors (spontaneous mammotropic transplantable tumor in Wistar-Furth rats) is related to growth rate and malignancy. Cancer Res. 2000;60(1):80–5.

    CAS  PubMed  Google Scholar 

  119. Ezzat S, Zheng L, Winer D, Asa SL. Targeting N-cadherin through fibroblast growth factor receptor-4: distinct Pathogenetic and therapeutic implications. Mol Endocrinol. 2006;20(11):2965–75.

    Article  CAS  PubMed  Google Scholar 

  120. Asa SL, Ezzat S. Genetics and proteomics of pituitary tumors. Endocrine. 2005;28(1):43–7.

    Article  CAS  PubMed  Google Scholar 

  121. Asa SL. The role of hypothalamic hormones in the pathogenesis of pituitary adenomas. Pathol Res Pract. 1991;187:581–3.

    Article  CAS  PubMed  Google Scholar 

  122. Sano T, Asa SL, Kovacs K. Growth hormone-releasing hormone-producing tumors: clinical, biochemical, and morphological manifestations. Endocr Rev. 1988;9:357–73.

    Article  CAS  PubMed  Google Scholar 

  123. Spada A, Arosio M, Bochicchio D, et al. Clinical, biochemical and morphological correlates in patients bearing growth hormone-secreting pituitary tumors with or without constitutively active adenylyl cyclase. J Clin Endocrinol Metab. 1990;71:1421–6.

    Article  CAS  PubMed  Google Scholar 

  124. Landis CA, Masters SB, Spada A, Pace AM, Bourne HR, Vallar L. GTPase inhibiting mutations activate the alpha-chain of Gs ans stimulate adenylate cyclase in human pituitary tumors. Nature. 1989;340:692–6.

    Article  CAS  PubMed  Google Scholar 

  125. Weinstein LS, Shenker A, Gejman PV, Merino MJ, Friedman E, Spiegel AM. Activating mutations of the stimulatory G protein in the McCune-Albright syndrome. N Engl J Med. 1991;325:1688–95.

    Article  CAS  PubMed  Google Scholar 

  126. Bhayana S, Booth GL, Asa SL, Kovacs K, Ezzat S. The implication of somatotroph adenoma phenotype to somatostatin analog responsiveness in acromegaly. J Clin Endocrinol Metab. 2005;90(11):6290–5.

    Article  CAS  PubMed  Google Scholar 

  127. Asa SL, Coschigano KT, Bellush L, Kopchick JJ, Ezzat S. Evidence for growth hormone (GH) autoregulation in pituitary somatotrophs in GH antagonist-transgenic mice and GH receptor-deficient mice. Am J Pathol. 2000;156(3):1009–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  128. Putzolu M, Meloni A, Loche S, Pischedda C, Cao A, Moi P. A homozygous nonsense mutation of the human growth hormone receptor gene in a Sardinian boy with Laron-type dwarfism. J Endocrinol Investig. 1997;20(5):286–8.

    Article  CAS  Google Scholar 

  129. Chen X, Song F, Dai Y, Bao X, Jin Y. A novel mutation of the growth hormone receptor gene (GHR) in a Chinese girl with Laron syndrome. J Pediatr Endocrinol Metab. 2003;16(8):1183–9.

    Article  CAS  PubMed  Google Scholar 

  130. Shevah O, Galli-Tsinopoulou A, Rubinstein M, Nousia-Arvanitakis S, Laron Z. Classical phenotype of Laron syndrome in a girl with a heterozygous mutation and heterozygous polymorphism of the growth hormone receptor gene. J Pediatr Endocrinol Metab. 2004;17(3):371–4.

    Article  PubMed  Google Scholar 

  131. Ezzat S, Kontogeorgos G, Redelmeier DA, Horvath E, Harris AG, Kovacs K. In vivo responsiveness of morphological variants of growth hormone-producing pituitary adenomas to octreotide. Eur J Endocrinol. 1995;133:686–90.

    Article  CAS  PubMed  Google Scholar 

  132. Asa SL, Kucharczyk W, Ezzat S. Pituitary acromegaly: not one disease. Endocr Relat Cancer. 2017;24(3):C1–4.

    Article  PubMed  Google Scholar 

  133. Asa SL, DiGiovanni R, Jiang J, et al. A growth hormone receptor mutation impairs growth hormone autofeedback signaling in pituitary tumors. Cancer Res. 2007;67(15):7505–11.

    Article  CAS  PubMed  Google Scholar 

  134. Kelly PA, Binart N, Lucas B, Bouchard B, Goffin V. Implications of multiple phenotypes observed in prolactin receptor knockout mice. Front Neuroendocrinol. 2001;22(2):140–5.

    Article  CAS  PubMed  Google Scholar 

  135. Schuff KG, Hentges ST, Kelly MA, et al. Lack of prolactin receptor signaling in mice results in lactotroph proliferation and prolactinomas by dopamine-dependent and -independent mechanisms. J Clin Invest. 2002;110(7):973–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  136. Jin L, Qian X, Kulig E, et al. Prolactin receptor messenger ribonucleic acid in normal and neoplastic human pituitary tissues. J Clin Endocrinol Metab. 1997;82(3):963–8.

    CAS  PubMed  Google Scholar 

  137. Newey PJ, Gorvin CM, Cleland SJ, et al. Mutant prolactin receptor and familial hyperprolactinemia. N Engl J Med. 2013;369(21):2012–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  138. Weil RJ, Vortmeyer AO, Huang S, et al. 11q13 allelic loss in pituitary tumors in patients with multiple endocrine neoplasia syndrome type 1. Clin Cancer Res. 1998;4(7):1673–8.

    CAS  PubMed  Google Scholar 

  139. Pack SD, Qin LX, Pak E, et al. Common genetic changes in hereditary and sporadic pituitary adenomas detected by comparative genomic hybridization. Genes Chromosomes Cancer. 2005;43(1):72–82.

    Article  CAS  PubMed  Google Scholar 

  140. Kiechle-Schwarz M, Bauknecht T, Wienker T, Walz L, Pfleiderer A. Loss of constitutional heterozygosity on chromosome 11p in human ovarian cancer. Positive correlation with grade of differentiation. Cancer. 1993;72(8):2423–32.

    Article  CAS  PubMed  Google Scholar 

  141. Voorter CE, Ummelen MI, Ramaekers FS, Hopman AH. Loss of chromosome 11 and 11 p/q imbalances in bladder cancer detected by fluorescence in situ hybridization. Int J Cancer. 1996;65(3):301–7.

    Article  CAS  PubMed  Google Scholar 

  142. Kitamura Y, Shimizu K, Ito K, Tanaka S, Emi M. Allelotyping of follicular thyroid carcinoma: frequent allelic losses in chromosome arms 7q, 11p, and 22q. J Clin Endocrinol Metab. 2001;86(9):4268–72.

    Article  CAS  PubMed  Google Scholar 

  143. Raverot G, Sturm N, de Fraipont F, et al. Temozolomide treatment in aggressive pituitary tumors and pituitary carcinomas: a French multicenter experience. J Clin Endocrinol Metab. 2010;95(10):4592–9.

    Article  CAS  PubMed  Google Scholar 

  144. Newey PJ, Thakker RV. Role of multiple endocrine neoplasia type 1 mutational analysis in clinical practice. Endocr Pract. 2011;17(Suppl 3):8–17.

    Article  PubMed  Google Scholar 

  145. Stilling G, Sun Z, Zhang S, et al. MicroRNA expression in ACTH-producing pituitary tumors: up-regulation of microRNA-122 and -493 in pituitary carcinomas. Endocrine. 2010;38(1):67–75.

    Article  CAS  PubMed  Google Scholar 

  146. Amaral FC, Torres N, Saggioro F, et al. MicroRNAs differentially expressed in ACTH-secreting pituitary tumors. J Clin Endocrinol Metab. 2009;94(1):320–3.

    Article  CAS  PubMed  Google Scholar 

  147. Bottoni A, Zatelli MC, Ferracin M, et al. Identification of differentially expressed microRNAs by microarray: a possible role for microRNA genes in pituitary adenomas. J Cell Physiol. 2007;210(2):370–7.

    Article  CAS  PubMed  Google Scholar 

  148. de Kock L, Sabbaghian N, Plourde F, et al. Pituitary blastoma: a pathognomonic feature of germ-line DICER1 mutations. Acta Neuropathol. 2014;128(1):111–22.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  149. Qian ZR, Asa SL, Siomi H, et al. Overexpression of HMGA2 relates to reduction of the let-7 and its relationship to clinicopathological features in pituitary adenomas. Mod Pathol. 2009;22(3):431–41.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ezzat, S., Asa, S.L. (2019). Molecular Predictors of Clinical Behavior in Pituitary Adenohypophysial Tumors. In: Kohn, B. (eds) Pituitary Disorders of Childhood. Contemporary Endocrinology. Humana Press, Cham. https://doi.org/10.1007/978-3-030-11339-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11339-1_9

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-030-11338-4

  • Online ISBN: 978-3-030-11339-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics