Skip to main content

Neuro-Ophthalmic Diseases and Endocrinologic Function

  • Chapter
  • First Online:
Book cover Pituitary Disorders of Childhood

Part of the book series: Contemporary Endocrinology ((COE))

  • 539 Accesses

Abstract

The purpose of this chapter is to highlight neuro-ophthalmic disease processes that have implications for endocrinologic function. We have sought to emphasize those relevant conditions which occur most commonly in the pediatric neuro-ophthalmic practice. Many of these conditions involve disease processes that localize to the sellar and suprasellar regions of the brain, with the potential to impact visual function at the level of the optic chiasm and hormonal function at the pituitary and hypothalamus. Each of these conditions warrants a multidisciplinary collaboration between neuro-ophthalmology and endocrinology to achieve the best clinical outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alt C, et al. Clinical and radiologic spectrum of septo-optic dysplasia: review of 17 cases. J Child Neurol. 2017;32(9):797–803.

    Article  PubMed  Google Scholar 

  2. Atapattu N, et al. Septo-optic dysplasia: antenatal risk factors and clinical features in a regional study. Horm Res Paediatr. 2012;78(2):81–7.

    Article  CAS  PubMed  Google Scholar 

  3. Borchert M. Reappraisal of the optic nerve hypoplasia syndrome. J Neuroophthalmol. 2012;32(1):58–67.

    Article  PubMed  Google Scholar 

  4. Miller SP, et al. Septo-optic dysplasia plus: a spectrum of malformations of cortical development. Neurology. 2000;54(8):1701–3.

    Article  CAS  PubMed  Google Scholar 

  5. Infante-Valenzuela A, et al. Septo-optic dysplasia plus diagnosed in adulthood. Neurol Sci. 2017;38:1705.

    Article  PubMed  Google Scholar 

  6. Ryabets-Lienhard A, et al. The optic nerve hypoplasia spectrum: review of the literature and clinical guidelines. Adv Pediatr Infect Dis. 2016;63(1):127–46.

    Google Scholar 

  7. Mohney BG, Young RC, Diehl N. Incidence and associated endocrine and neurologic abnormalities of optic nerve hypoplasia. JAMA Ophthalmol. 2013;131(7):898–902.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ahmad T, et al. Endocrinological and auxological abnormalities in young children with optic nerve hypoplasia: a prospective study. J Pediatr. 2006;148(1):78–84.

    Article  PubMed  Google Scholar 

  9. Koizumi M, et al. Endocrine status of patients with septo-optic dysplasia: fourteen Japanese cases. Clin Pediatr Endocrinol. 2017;26(2):89–98.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Garcia-Filion P, et al. Neuroradiographic, endocrinologic, and ophthalmic correlates of adverse developmental outcomes in children with optic nerve hypoplasia: a prospective study. Pediatrics. 2008;121(3):e653–9.

    Article  PubMed  Google Scholar 

  11. Goh YW, et al. Clinical and demographic associations with optic nerve hypoplasia in New Zealand. Br J Ophthalmol. 2014;98(10):1364–7.

    Article  PubMed  Google Scholar 

  12. Cemeroglu AP, Coulas T, Kleis L. Spectrum of clinical presentations and endocrinological findings of patients with septo-optic dysplasia: a retrospective study. J Pediatr Endocrinol Metab. 2015;28(9–10):1057–63.

    PubMed  Google Scholar 

  13. Deal C, et al. Associations between pituitary imaging abnormalities and clinical and biochemical phenotypes in children with congenital growth hormone deficiency: data from an international observational study. Horm Res Paediatr. 2013;79(5):283–92.

    Article  CAS  PubMed  Google Scholar 

  14. Avbelj Stefanija M, et al. Novel mutations in HESX1 and PROP1 genes in combined pituitary hormone deficiency. Horm Res Paediatr. 2015;84(3):153–8.

    Article  CAS  PubMed  Google Scholar 

  15. Takagi M, et al. A novel mutation in HESX1 causes combined pituitary hormone deficiency without septo optic dysplasia phenotypes. Endocr J. 2016;63(4):405–10.

    Article  CAS  PubMed  Google Scholar 

  16. Jabeen M, et al. Septo-optic dysplasia in a newborn presenting with bilateral dilated and fixed pupils. AJP Rep. 2016;6(1):e112–4.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Catli G, et al. Acceleration of puberty during growth hormone therapy in a child with septo-optic dysplasia. J Clin Res Pediatr Endocrinol. 2014;6(2):116–8.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Maurya VK, et al. Septo-optic dysplasia: Magnetic Resonance Imaging findings. Med J Armed Forces India. 2015;71(3):287–9.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kelly JP, Phillips JO, Weiss AH. VEP analysis methods in children with optic nerve hypoplasia: relationship to visual acuity and optic disc diameter. Doc Ophthalmol. 2016;133(3):159–69.

    Article  PubMed  Google Scholar 

  20. Pilat A, et al. High-resolution imaging of the optic nerve and retina in optic nerve hypoplasia. Ophthalmology. 2015;122(7):1330–9.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Garcia-Arreza A, et al. Isolated absence of septum pellucidum: prenatal diagnosis and outcome. Fetal Diagn Ther. 2013;33(2):130–2.

    Article  PubMed  Google Scholar 

  22. Jutley-Neilson J, Harris G, Kirk J. The identification and measurement of autistic features in children with septo-optic dysplasia, optic nerve hypoplasia and isolated hypopituitarism. Res Dev Disabil. 2013;34(12):4310–8.

    Article  PubMed  Google Scholar 

  23. Fink C, et al. Hypothalamic dysfunction without hamartomas causing gelastic seizures in optic nerve hypoplasia. J Child Neurol. 2015;30(2):233–7.

    Article  PubMed  Google Scholar 

  24. Rivkees SA, et al. Prevalence and risk factors for disrupted circadian rhythmicity in children with optic nerve hypoplasia. Br J Ophthalmol. 2010;94(10):1358–62.

    Article  CAS  PubMed  Google Scholar 

  25. Rivkees SA. Arrhythmicity in a child with septo-optic dysplasia and establishment of sleep-wake cyclicity with melatonin. J Pediatr. 2001;139(3):463–5.

    Article  CAS  PubMed  Google Scholar 

  26. Rivkees SA. Graves’ disease therapy in children: truth and inevitable consequences. J Pediatr Endocrinol Metab. 2007;20(9):953–5.

    PubMed  Google Scholar 

  27. Liu GT, Volpe NJ, Galetta SL. Vision loss disorders of the chiasm. In:Neuro-ophtlamology: diagnosis and management. New York: Elsevier; 2010.

    Google Scholar 

  28. Brodsky MC. The optic chiasm. In:Pediatric ophthalmology and strabismus. China: Elsevier; 2017.

    Google Scholar 

  29. Aquilina K, et al. Optic pathway glioma in children: does visual deficit correlate with radiology in focal exophytic lesions? Childs Nerv Syst. 2015;31(11):2041–9.

    Article  PubMed  Google Scholar 

  30. Ertiaei A, et al. Optic pathway gliomas: clinical manifestation, treatment, and follow-up. Pediatr Neurosurg. 2016;51(5):223–8.

    Article  PubMed  Google Scholar 

  31. Dodgshun AJ, et al. Long-term visual outcome after chemotherapy for optic pathway glioma in children: site and age are strongly predictive. Cancer. 2015;121(23):4190–6.

    Article  PubMed  Google Scholar 

  32. Wan MJ, et al. Long-term visual outcomes of optic pathway gliomas in pediatric patients without neurofibromatosis type 1. J Neurooncol. 2016;129(1):173–8.

    Article  PubMed  Google Scholar 

  33. Trevisson E, et al. Natural history of optic pathway gliomas in a cohort of unselected patients affected by neurofibromatosis 1. J Neurooncol. 2017;134:279.

    Article  PubMed  Google Scholar 

  34. Wagner RS. Ophthalmologic screening for optic pathway glioma in neurofibromatosis type 1. J Pediatr Ophthalmol Strabismus. 2016;53(6):333.

    Article  PubMed  Google Scholar 

  35. Taylor M, et al. Hypothalamic-pituitary lesions in pediatric patients: endocrine symptoms often precede neuro-ophthalmic presenting symptoms. J Pediatr. 2012;161(5):855–63.

    Article  PubMed  Google Scholar 

  36. Gan HW, et al. Neuroendocrine morbidity after pediatric optic gliomas: a longitudinal analysis of 166 children over 30 years. J Clin Endocrinol Metab. 2015;100(10):3787–99.

    Article  CAS  PubMed  Google Scholar 

  37. Hersh JH, G. American Academy of Pediatrics Committee. Health supervision for children with neurofibromatosis. Pediatrics. 2008;121(3):633–42.

    Article  PubMed  Google Scholar 

  38. Tosur M, Tomsa A, Paul DL. Diencephalic syndrome: a rare cause of failure to thrive. BMJ Case Rep. 2017;2017. pii: bcr-2017-220171. https://doi.org/10.1136/bcr-2017-220171.

  39. Fleischman A, et al. Diencephalic syndrome: a cause of failure to thrive and a model of partial growth hormone resistance. Pediatrics. 2005;115(6):e742–8.

    Article  PubMed  Google Scholar 

  40. Poussaint TY, et al. Diencephalic syndrome: clinical features and imaging findings. AJNR Am J Neuroradiol. 1997;18(8):1499–505.

    CAS  PubMed  Google Scholar 

  41. Brauner R, et al. Diencephalic syndrome due to hypothalamic tumor: a model of the relationship between weight and puberty onset. J Clin Endocrinol Metab. 2006;91(7):2467–73.

    Article  CAS  PubMed  Google Scholar 

  42. Nielsen EH, et al. Acute presentation of craniopharyngioma in children and adults in a Danish national cohort. Pituitary. 2013;16(4):528–35.

    Article  CAS  PubMed  Google Scholar 

  43. Hoffmann A, et al. History before diagnosis in childhood craniopharyngioma: associations with initial presentation and long-term prognosis. Eur J Endocrinol. 2015;173(6):853–62.

    Article  CAS  PubMed  Google Scholar 

  44. Drimtzias E, et al. The ophthalmic natural history of paediatric craniopharyngioma: a long-term review. J Neurooncol. 2014;120(3):651–6.

    Article  PubMed  Google Scholar 

  45. Unsinn C, et al. Sellar and parasellar lesions - clinical outcome in 61 children. Clin Neurol Neurosurg. 2014;123:102–8.

    Article  PubMed  Google Scholar 

  46. Pandey P, Ojha BK, Mahapatra AK. Pediatric pituitary adenoma: a series of 42 patients. J Clin Neurosci. 2005;12(2):124–7.

    Article  CAS  PubMed  Google Scholar 

  47. Tamura T, et al. Pediatric pituitary adenoma. Endocr J. 2000;47 Suppl:S95–9.

    Article  CAS  PubMed  Google Scholar 

  48. Zhang N, et al. A retrospective review of 34 cases of pediatric pituitary adenoma. Childs Nerv Syst. 2017;33:1961.

    Article  PubMed  Google Scholar 

  49. Lee IH, et al. Visual defects in patients with pituitary adenomas: the myth of bitemporal hemianopsia. AJR Am J Roentgenol. 2015;205(5):W512–8.

    Article  PubMed  Google Scholar 

  50. Ogra S, et al. Visual acuity and pattern of visual field loss at presentation in pituitary adenoma. J Clin Neurosci. 2014;21(5):735–40.

    Article  PubMed  Google Scholar 

  51. Friedman DI, Liu GT, Digre KB. Revised diagnostic criteria for the pseudotumor cerebri syndrome in adults and children. Neurology. 2013;81(13):1159–65.

    Article  PubMed  Google Scholar 

  52. Victorio MC, Rothner AD. Diagnosis and treatment of idiopathic intracranial hypertension (IIH) in children and adolescents. Curr Neurol Neurosci Rep. 2013;13(3):336.

    Article  PubMed  Google Scholar 

  53. Per H, et al. Clinical spectrum of the pseudotumor cerebri in children: etiological, clinical features, treatment and prognosis. Brain Dev. 2013;35(6):561–8.

    Article  PubMed  Google Scholar 

  54. Sheldon CA, et al. Pediatric idiopathic intracranial hypertension: age, gender, and anthropometric features at diagnosis in a large, retrospective, multisite cohort. Ophthalmology. 2016;123(11):2424–31.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Sheldon CA, et al. An integrated mechanism of pediatric pseudotumor cerebri syndrome: evidence of bioenergetic and hormonal regulation of cerebrospinal fluid dynamics. Pediatr Res. 2015;77(2):282–9.

    Article  PubMed  Google Scholar 

  56. Beal CJ, Pao KY, Hogan RN. Intracranial hypertension due to levothyroxine use. J AAPOS. 2014;18(5):504–7.

    Article  PubMed  Google Scholar 

  57. Kiehna EN, et al. Pseudotumor cerebri after surgical remission of Cushing’s disease. J Clin Endocrinol Metab. 2010;95(4):1528–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Khan MU, et al. Idiopathic intracranial hypertension associated with either primary or secondary aldosteronism. Am J Med Sci. 2013;346(3):194–8.

    Article  PubMed  Google Scholar 

  59. Salpietro V, et al. New insights on the relationship between pseudotumor cerebri and secondary hyperaldosteronism in children. J Hypertens. 2012;30(3):629–30.

    Article  CAS  PubMed  Google Scholar 

  60. Loukianou E, et al. Pseudotumor cerebri in a child with idiopathic growth hormone insufficiency two months after initiation of recombinant human growth hormone treatment. Case Rep Ophthalmol Med. 2016;2016:4756894.

    PubMed  PubMed Central  Google Scholar 

  61. Rogers AH, et al. Pseudotumor cerebri in children receiving recombinant human growth hormone. Ophthalmology. 1999;106(6):1186–9; discussion 1189–90.

    Article  CAS  PubMed  Google Scholar 

  62. Koller EA, Stadel BV, Malozowski SN. Papilledema in 15 renally compromised patients treated with growth hormone. Pediatr Nephrol. 1997;11(4):451–4.

    Article  CAS  PubMed  Google Scholar 

  63. Malozowski S, et al. Growth hormone, insulin-like growth factor I, and benign intracranial hypertension. N Engl J Med. 1993;329(9):665–6.

    Article  CAS  PubMed  Google Scholar 

  64. Malozowski S, et al. Benign intracranial hypertension in children with growth hormone deficiency treated with growth hormone. J Pediatr. 1995;126(6):996–9.

    Article  CAS  PubMed  Google Scholar 

  65. Vitaliti G, et al. Therapeutic approaches to pediatric pseudotumor cerebri: new insights from literature data. Int J Immunopathol Pharmacol. 2017;30(1):94–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gena Heidary .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dodd, MM.U., Heidary, G. (2019). Neuro-Ophthalmic Diseases and Endocrinologic Function. In: Kohn, B. (eds) Pituitary Disorders of Childhood. Contemporary Endocrinology. Humana Press, Cham. https://doi.org/10.1007/978-3-030-11339-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11339-1_15

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-030-11338-4

  • Online ISBN: 978-3-030-11339-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics