Skip to main content

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 198))

Abstract

The idea of sustainability is based on three main pillars which are the society, the environment, and the economy, and is aimed at meeting the requirements of the present generation, and ensuring the ability of fulfillment of needs for future generations. The sustainability requires implementation of energy and resource-efficient technologies, which are environmentally friendly, reduce production waste and incorporate their effective management, and maintain financially-effective as well. On account of the effort and costs associated with the titanium manufacturing, there is a consequential need for improved sustainable production of this material. Extensively utilization of titanium and its alloys for specialized applications in the fields of aerospace, medical and general industry, caused by their high specific strength and excellent corrosion resistance, drive the development of this class of materials. Nevertheless, despite their desirable properties, they are generally considered as products of high-cost. This work presents an overview of current titanium production methods, their critical evaluation, as well as trends in titanium production development processes in conjunction with the idea of sustainable manufacturing. This paper focuses on titanium production processes with particular emphasis on the operating conditions, the effect of energy consumption and environmental impact assessment of current and proposed technologies of titanium production. The main object of this work is to discuss the challenges, economic and environmental aspects of titanium and its alloys’ production methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Singh, P., Pungotra, H., Kalsi, N.: On the characteristics of titanium alloys for the aircraft applications. Mater Today (Kidlington) 4(8), 8971–8982 (2017)

    Google Scholar 

  2. Seong, S., Younossi, O., Goldsmith, B.W. et al.: Titanium: Industrial Base, Price Trends, and Technology Initiatives. Santa Monica, CA: RAND Corporation. (2009). https://www.rand.org/pubs/monographs/MG789.html

    Book  Google Scholar 

  3. Vinicius, A.R.H.: Titanium production for aerospace applications. J. Aerosp. Technol. Manage. 1(1), 7–17 (2009)

    Article  Google Scholar 

  4. Bran, D.T., Elefterie, C.F., Ghiban, B.: Aeronautical Industry Requirements for Titanium Alloys, vol. 209. IOP Conference Series: Materials Science and Engineering (2017)

    Google Scholar 

  5. Jackson, M., Dring, K.: A review of advances in processing and metallurgy of titanium alloys. Mater. Sci. Technol. 22(8), 881–887 (2006)

    Article  Google Scholar 

  6. Veiga, C., Davim, J.P., Loureiro, A.J.R.: Properties and applications of titanium alloys: a brief review. Rev. Adv. Mater. Sci. 32, 14–34 (2012)

    Google Scholar 

  7. Cotton, J.D., Briggs, R.D., Boyer, R.R., Tamirisakandala, S., et al.: State of the art in beta titanium alloys for airframe application. JOM 67, 1281 (2015)

    Article  Google Scholar 

  8. Mohsin, T.M.: Development of a new metastable beta titanium alloy for biomedical applications. Karbala Int. J. Mod. Sci. 3(4), 224–230 (2017)

    Article  Google Scholar 

  9. Vu, N., Nhung, T., Dang, L.: In vitro and in vivo biocompatibility of Ti-6Al-4V titanium alloy and UHMWPE polymer for total hip replacement. Biomed. Res. T 3(3), 567–577 (2016)

    Article  Google Scholar 

  10. Li, Yuhua, Yang, C., Zhao, H., Qu, S., Li, X., Li, Y.: New developments of Ti-Based alloys for biomedical applications. Materials 7, 1709–1800 (2014)

    Article  Google Scholar 

  11. Prasad, K., Bazaka, O., Chua, M., et al.: Metallic biomaterials: current challenges and opportunities. Mater. (Basel) 10(8), 884 (2017)

    Article  Google Scholar 

  12. Tamaddon, M., Samizadeh, S., Wang L., et al.: Intrinsic osteoinductivity of porous titanium scaffold for bone tissue engineering. Int. J. Biomater., Article ID 5093063, (2017)

    Google Scholar 

  13. Tendulkar, G., Sreekumar, V., Rupp, F., et al: Characterisation of porous knitted titanium for replacement of intervertebral disc nucleus pulposus. Sci. Rep. 7(16611) (2017)

    Google Scholar 

  14. Nagesh, C., Sridhar Rao, C., Ballal, N., Krishna Rao, P.: Mechanism of titanium sponge formation in the kroll reduction reactor. Metall. Mater. Trans. B 35(1), 65–74 (2004)

    Article  Google Scholar 

  15. van Vuuren, D.S.: A critical evaluation of processes to produce primary titanium. J. South. Afr. Inst. Min. Metall. 109, 455–461 (2009)

    Google Scholar 

  16. Fang, Z.Z., Paramore, J., Sun, P., et al.: Powder metallurgy of titanium—past, present, and future. Int. Mater. Rev. 63(7), 407–459 (2018)

    Article  Google Scholar 

  17. Nakamura, K., Iida, T., Nakamura, N., Araike, T.: Titanium sponge production method by kroll process at OTC. Mater. Trans. 58(3), 319–321 (2017)

    Article  Google Scholar 

  18. Gerdemann, S.J.: Titanium Process Technologies. Adv. Mater. Process. 159(7) 41–43 (2001)

    Google Scholar 

  19. Suzuki, K.: An Introduction to the extraction, melting and casting technologies of titanium alloys. Met. Mater. Int. 7(6), 587–604 (2001)

    Article  Google Scholar 

  20. Takeda, O., Okabe, T.: Mater. Trans. 47(4), 1145–1154 (2006)

    Article  Google Scholar 

  21. Withers, J.C.: Production of Titanium powder by an electrolytic method and compaction of the powder. In: Qian, M., Froes, F. (ed.) Science, Technology and Applications, pp. (33-49). Elsevier, (2015)

    Google Scholar 

  22. Kroll, W.: The production of ductile titanium. Trans. Electrochem. Soc. 78, 35–47 (1940)

    Article  Google Scholar 

  23. Bordbar, H., Yousefi, A., Abedini, H.: Production of titanium tetrachloride (TiCl4) from titanium ores: A review. Polyolefins J. 4(2) 149–173 (2017)

    Google Scholar 

  24. Seetharaman, S.: Treatise on Process Metallurgy, volume 3: industrial processes. Amsterdam, Elsevier (2013)

    Google Scholar 

  25. Goso, X., Kale, A.: Production of titanium metal powder by the HDH process. J. South. Afr. Inst. Min. Metall. 111, 203–210 (2011)

    Google Scholar 

  26. Froes, F. (ed.): History and extractive metallurgy. In: Titanium: Physical Metallurgy, Processing, and Applications, pp. 1–27. ASM International (2015)

    Google Scholar 

  27. Kohli, R.: Production of Titanium from Ilmenite: A Review. Lawrence Berkeley Lab, Berkeley (CA) (1981)

    Book  Google Scholar 

  28. van Vuuren, D.S.: Oosthuizen, S.J.: Heydenrych, M.D.: Titanium production via metallothermic reduction of TiCl4 in molten salt: problems and products. J. South. Afr. Inst. Min. Metall. 111, 141–148 (2012)

    Google Scholar 

  29. Bolzoni, L., Ruiz-Navas, E.M., Gordo, E.: Processing of elemental titanium by powder metallurgy techniques. Mater. Sci. Forum 765, 383–387 (2013)

    Article  Google Scholar 

  30. Cardarelli, F.: Less common nonferrous metals. In: Materials Handbook: A Concise Desktop Reference, pp. 381–456. Springer, (2018)

    Google Scholar 

  31. Haapala, K, Atre, S., Enneti, R., Garretson, I., Zhang, H.: Materials processing. In Energy Efficient Manufacturing: Theory and Applications. John Wiley (2018)

    Google Scholar 

  32. Campbell F. C.: Manufacturing Technology for Aerospace Structural Materials. Elsevier (2011)

    Google Scholar 

  33. Froes F.H. (ed.): Melting, casting and powder metallurgy. In Titanium: Physical Metallurgy, Processing, and Applications. ASM International, pp. 161–203 (2015)

    Google Scholar 

  34. Doblin, C., Freeman, D., Richards, M.: The TiRO™ Process for the Continuous Direct Production of Titanium Powder. Key Eng. Mater. 551, 37–43 (2013)

    Article  Google Scholar 

  35. Doblin, C., Chryss, A., Monch, A.: Titanium powder from the TiRO™ process. Key Eng. Mater. 520, 95–100 (2012)

    Article  Google Scholar 

  36. van Vuuren D. S.: Direct titanium powder production by metallothermic processes. In: Titanium Powder Metallurgy: Science Technology and Applications, 69–89 (2015)

    Google Scholar 

  37. Deura, T., Matsunaga, T., Suzuki, R., et al.: Titanium powder production by TiCl4 gas injection into magnesium through molten salts. Metall. Mater. Trans. B 29(6), 1167–1174 (1998)

    Article  Google Scholar 

  38. Hansen, D., Gerdemann, S.: Producing titanium powder by continuous vapor-phase reduction. JOM 50(11), 56–58 (1998)

    Article  Google Scholar 

  39. Fujita, T., Ogawa, A., Ouchi, C., Tajima, H.: Microstructure and properties of titanium alloy produced in the newly developed blended elemental powder metallurgy process. Mater. Sci. Eng. A 213, 148–153 (1996)

    Article  Google Scholar 

  40. Zheng, H., Ito, H., Okabe, T.: Production of titanium powder by the calciothermic reduction of titanium concentrates or ore using the preform reduction process. Mater. Trans. 48(8), 2244–2251 (2007)

    Article  Google Scholar 

  41. Seon, F., Nataf, F.: Production of Metals by Metallothermia, US Pat 4,725,312, 1988

    Google Scholar 

  42. Grjotheim, K.: Kvande H., Qingfeng, L., Zhuxian, Q.: Metal Production by Molten Salt Electrolysis Especially Aluminium And Magnesium. China University of Mining And Technology Press (1998)

    Google Scholar 

  43. McQuillan, A.D., McQuillan, M.K.: Metallurgy of the Rarer Metals No. 4, Titanium. Butterworths Scientific Publications, London (1956)

    Google Scholar 

  44. Mo, W.: Titanium metallurgy. Metallurgical Industry Press, Beijing (1998)

    Google Scholar 

  45. Nagesh, C., Ramachandran, C., Subramanyam, R.: Methods of Titanium Sponge Production. Trans. Indian Inst. Met. 61(5), 341–348 (2008)

    Article  Google Scholar 

  46. Fray, D.J.: Novel methods for the production of titanium. Int. Mater. Rev. 53(6), 317–325 (2008)

    Article  Google Scholar 

  47. Hunter, M.A.: J. Am. Chem. Soc. 32, 330–336 (1910)

    Article  Google Scholar 

  48. Araci, K., Mangabhai, D., Akhtar, K.: Production of titanium by the Armstrong Process®, Titanium Powder Metallurgy Science. Technol. Appl. 149–162 (2015)

    Google Scholar 

  49. Chen, W., Yamamoto, Y., Peter, W.H., et al.: Cold compaction study of Armstrong Process® Ti–6Al–4V powders. Powder Technol. 214(2), 194–199 (2011)

    Article  Google Scholar 

  50. Armstrong, D.R., Borys, S.S., Anderson, R.P.: Method of Making Metals and Other Elements from the Halid Vapor of the Metal, USA, US Patent 5958106 (1999)

    Google Scholar 

  51. Roza, G.: Finding Titanium. In: Titanium The Rosen Publishing Group, Inc. 19–25, (2008)

    Google Scholar 

  52. Chen, W., Yamamoto, Y., Peter, W.H., et al.: The investigation of die-pressing and sintering behavior of ITP CP-Ti and Ti–6Al–4V powders. J Alloy. Compd. 541, 440–447б (2012)

    Article  Google Scholar 

  53. Chen, G.Z., Fray, D.J., Farthing, T.W.: Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride. Nature 407(6802), 361–364 (2000)

    Article  Google Scholar 

  54. Oosthuizen, S.: In search of low cost titanium: the Fray Farthing Chen (FFC) Cambridge process. J. South. Afr. Inst. Min. Metall. 111, 199–202 (2011)

    Google Scholar 

  55. Fenn, A., Cooley, G., Fray, D.: Exploiting the FFC Cambridge process. Adv. Mater. Process. 162(2), 51–53

    Google Scholar 

  56. Schwandt, C, Doughty, G., Fray, D.: The FFC-Cambridge process for titanium metal winning. Key. Eng. Mat. 436, 13–25

    Article  Google Scholar 

  57. Alexander, D. T. L., Schwandt, C., Fray, D.J.: The electro-deoxidation of dense titanium dioxide precursors in molten calcium chloride giving a new reaction pathway. Electrochim. Acta 56(9), 3286–3295 (2011)

    Article  Google Scholar 

  58. Chen, G.: The FFC Cambridge process and its relevance to valorisation of ilmenite and titanium-rich slag. Min. Process. Extr. Metall. Trans. Inst. Min. Metall. C, 124(2), 96–105 (2015)

    Article  Google Scholar 

  59. Arif, A., Balgis, R., Ogi, T., et al.: Highly conductive nano-sized Magnéli phases titanium oxide (TiOx). Sci. Rep. 7, 3646 (2017)

    Article  Google Scholar 

  60. Benson, L., Mellor, I., Jackson, M.: Direct reduction of synthetic rutile using the FFC process to produce low-cost novel titanium alloys. J. Mater. Sci. 51(9), 4250–4261 (2016)

    Article  Google Scholar 

  61. Mellor, I., Grainger, L., Rao, K., et al.: Titanium powder production via the metalysis process. In Qian, M. (eds.) Titanium Powder Metallurgy: Science, Technology and Applications, pp. 51–67 (2015)

    Chapter  Google Scholar 

  62. Mohandas, K.S., Fray, D.: FFC Cambridge process and removal of oxygen from metal-oxygen systems by molten salt electrolysis: an overview. Trans. Indian Inst. Met. 57(6), 579–592 (2004)

    Google Scholar 

  63. Norgate, T.E., Jahanshahi, S., Rankin, W.J.: Assessing the environmental impact of metal production processes. J. Clean. Prod. 15(8–9), 838–848 (2007)

    Article  Google Scholar 

  64. Norgate, T.E., Rajakumar, V., Trang, S.C.T.: Titanium and other light metals: technology pathways to sustainable development. In: Green Processing, 2nd International Conference on the Sustainable Processing of Minerals, pp. 105–112 (2004)

    Google Scholar 

  65. Rankin, W.J.: Energy consumption in primary production. In: Minerals, Metals and Sustainability: Meeting Future Material Needs. CSIRO Publishing (2007)

    Google Scholar 

  66. Bowden, D. M., Peter, W. H.: Near-Net Shape Fabrication Using Low-Cost Titanium Alloy Powders. Final Technical Report, The Boeing Company, Boeing Research & Technology (2012)

    Google Scholar 

  67. Office of Energ Efficiency & Renevable Energy, Advance Manufacturing Office, U. S. Department of Energy, Bandwidth Study on Energy Use and Potential Energy Savings Opportunities in U.S. Titanium Manufacturing (2017)

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from National Science Centre in the frame of UMO-2016/21/D/ST8/01697.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka Sobczak-Kupiec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Florkiewicz, W., Malina, D., Tyliszczak, B., Sobczak-Kupiec, A. (2020). Manufacturing of Titanium and Its Alloys. In: Królczyk, G., Wzorek, M., Król, A., Kochan, O., Su, J., Kacprzyk, J. (eds) Sustainable Production: Novel Trends in Energy, Environment and Material Systems. Studies in Systems, Decision and Control, vol 198. Springer, Cham. https://doi.org/10.1007/978-3-030-11274-5_5

Download citation

Publish with us

Policies and ethics