Skip to main content

Abstract

The paper presents characteristic, applications as well as worldwide demand for chitosan and the resulting development of the methodology of obtaining this biopolymer. Currently, chitosan is one of the leading polysaccharides on the polymer market. This results from its properties such as biodegradability, biocompatibility, antimicrobial activity, adsorption capability and chelating properties. Therefore this polysaccharide finds application in a wide variety of areas such as medicine and related fields, environmental protection, food science or agriculture. Due to the growing interest in this biopolymer—worldwide demand for chitin (chitosan is its deacetylated derivative) in 2015 was 60,000 t—new sources of chitosan as well as new methods of its extraction are currently a research subject of many scientists. An important issue is a development of methodologies in accordance with recommendations of the sustainable production trend, i.e. considering such issues as e.g. reduction in the energy consumption, reuse and recycle of reagents or reduction in the amount of generated waste. Therefore many studies are currently carried out to obtain chitosan using methods that will have the least impact on the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alieh-Ali-Kimi, D., Hamblin, R.M.: Chitin and chitosan and application of versatile biomedical nanomaterials. Int. J. Adv. Res. 4(3), 411–427 (2016)

    Google Scholar 

  2. Abdel-Rahman, R.M., Hrdina, R., Abdel-Mohsen, A.M., Fouda, M.M.G., Soliman, A.Y., Mohamed, F.K., Mohsin, K., Pinto, T.D.: Chitin and chitosan from Brazilian Atlantic Coast: isolation, characterization and antibacterial activity. Int. J. Biol. Macromol. 80, 107–120 (2015)

    Article  Google Scholar 

  3. Younes, I., Sellimi, S., Rinaudo, M., Jellouli, K., Nasri, M.: Infuence of acetylation degree and molecular weight of homogeneous chitosans on antibacterial and antifungal activities. Int. J. Food Microbiol. 185, 57–63 (2014)

    Article  Google Scholar 

  4. Ravi Kumar, M.N.V., Muzzarelli, R.A.A., Muzzarelli, C., Sashiwa, H., Domb, J.: Chitosan chemistry and pharmaceutical perspectives. Chem. Rev. 104(12), 6017–6084 (2004)

    Article  Google Scholar 

  5. Inamdar, N.N., Mourya, V.:Chitosan and low molecular weight chitosan: biological and biomedical applications. In: Tiwari, A. and Nordin, A.N. (eds), Advanced Biomaterials and Biodevices, Scrivener Publishing LLC (2014)

    Google Scholar 

  6. Sayari, N., Sila, A., Abdelmalek, B.E., Abdallah, R.B., Ellouz-Chaabouni, S., Bougatef, A., Balti, R.: Chitin and chitosan from the Norway lobster by-products: antimicrobial and anti-proliferative activities. Int. J. Biol. Macromol. 87, 163–171 (2016)

    Article  Google Scholar 

  7. Al-Manhel, A.J., Al-Hilphy, A.R.S., Niamah, A.K.: Extraction of chitosan, characterisation and its use for water purification. J. Saudi Soc. Agric. Sci. 17, 186–190 (2018)

    Google Scholar 

  8. Teli, M.D., Sheikh, J.: Extraction of chitosan from shrimp shells waste and application in antibacterial finishing of bamboo rayon. Int. J. Biol. Macromol. 50, 1195–1200 (2012)

    Article  Google Scholar 

  9. Muxika, A., Etxabide, A., Uranga, J., Guerrero, P., de la Caba, K.: Chitosan as a bioactive polymer: processing, properties and applications. Int. J. Biol. Macromol. 105, 1358–1368 (2017)

    Article  Google Scholar 

  10. Li, X., Feng, X., Yang, S., Fu, G., Wang, T., Su, Z.: Chitosan kills Escherichia coli through damage to be of cell membrane mechanism. Carbohydr. Polym. 79(3), 493–499 (2010)

    Article  Google Scholar 

  11. Chien, R.-C., Yen, M.-T., Mau, J.-L.: Antimicrobial and antitumor activities of chitosan from shiitake stipes, compared to commercial chitosan from crabshells. Carbohydr. Polym. 138, 259–264 (2015)

    Article  Google Scholar 

  12. Mukherjee, D., Azamthulla, Md, Santhosh, S., Dath, G., Ghosh, A., Natholia, R., Anbu, J., Teja, V.B., Muzammil, K.M.: Development and characterization of chitosan-based hydrogel as wound dressing materials. J Drug Deliv Sci Technol 46, 498–510 (2018)

    Article  Google Scholar 

  13. Hamedi, H., Moradi, S., Hudson, S.M., Tonelli, A.E.: Chitosan based hydrogels ad their applications for drug delivery in wound dressings: a review. Carbohydr. Polym. 199, 445–460 (2018)

    Article  Google Scholar 

  14. Mohandas, A., Deepthi, S., Biswas, R., Jayakimar, R.: Chitosan based metallic nanocomposite scaffolds as antimicrobial wound dressings. Bioact. Mater. 3(3), 267–277 (2018)

    Article  Google Scholar 

  15. Lin, L., Xue, L., Duraiarasan, S., Haiying, C.: Preparation of ε-polylysine/chitosan nanofibers for food packaging against Salmonella on chicken. Food Packag. Shelf Life 17, 134–141 (2018)

    Article  Google Scholar 

  16. Riaz, A., Lei, S., Akhtar, H.M.S., Wan, P., Chen, D., Jabbar, S., Abid, M., Hashim, M.M., Zeng, X.: Preparation and characterization of chitosan-based antimicrobial active food packaging film incorporated with apple peel polyphenols. Int. J. Biol. Macromol. 114, 547–555 (2018)

    Article  Google Scholar 

  17. El Knidri, H., Belaabed, R., Addaou, A., Laajeb, A., Lahsini, A.: Extraction, chemical modification and characterization of chitin and chitosan. Int. J. Biol. Macromol. 120, 1181–1189 (2018)

    Article  Google Scholar 

  18. Bassi, R., Prasher, S.O.: Removal of selected metal ions from aqueous solutions using chitosan flakes. Sep. Sci. Technol. 35(4), 547–560 (2000)

    Article  Google Scholar 

  19. Brigham, C.J.: Chitin and chitosan: sustainable, medically relevant biomaterials. Int. J. Biotechnol. Wellness Ind. 6, 41–47 (2017)

    Article  Google Scholar 

  20. Tyliszczak, B., Drabczyk, A., Kudłacik-Kramarczyk, S., Sobczak-Kupiec, A.: Preparation, characterization, and in vitro cytotoxicity of chitosan hydrogels containing silver nanoparticles. J. Biomater. Sci. Polym. Ed., Polym. Ed. 28(15), 1665–1676 (2017)

    Article  Google Scholar 

  21. Tyliszczak, B., Kudłacik-Kramarczyk, S., Drabczyk, A., Sobczak-Kupiec, A.: Synthesis, characterization, and in vitro cytotoxicity of chitosan hydrogels containing nanogold. Int. J. Polym. Mater. Poly. Biomate. https://doi.org/10.1080/00914037.2018.1429438

  22. Liu, L., He, Y., Shi, X., Gao, H., Wang, Y., Lin, Z.: Phosphocreatine-modified chitosan porous scaffolds promote mineralization and osteogenesis in vitro and in vivo. Appl. Mater. Today 12, 21–33 (2018)

    Article  Google Scholar 

  23. Sethy, T.R., Sahoo, P.K.: Highly toxic Cr (VI) adsorption by (chitosan-g-PMMA)/silica bionanocomposite prepared via emulsifier-free emulsion polymerisation. Int. J. Biol. Macromol. https://doi.org/10.1016/j.ijbiomac.2018.09.069 (2018)

    Article  Google Scholar 

  24. Demir, A.K., Elcin, A.E., Elcin, Y.M.: Strontium-modified chitosan/montmorillonite composites as bone tissue engineering scaffold. Mater. Sci. Eng. C. Mater. Biol. Appl. 89, 8–14 (2018)

    Article  Google Scholar 

  25. Vashist, S.K.: Chitosan: growing importance in biomedical and bioanalytical sciences. Austin. J. Nanomed. Nanotechnol. 2(4), 1024 (2014)

    Google Scholar 

  26. Luo, Z., Dubey, R., Gunasekaran, A., Childe, S.J., Papadopopoulos, T., Hazen, B., Roubaud, D.: Sustainable production framework for cement manufacturing firms: a behavioural perspective. Renew. Sust. Energ. Rev. 78, 495–502 (2017)

    Article  Google Scholar 

  27. https://www.gminsights.com/industry-analysis/chitosan-market [access online: 25.09.2018]

  28. http://sflyproteins.com/a-worldwide-market-with-a-strong-demand/ [access online: 25.09.2018]

  29. Varshosaz, J.: The promise of chitosan microspheres in drug delivery systems. Expert Opin. Drug Deliv. 4(3), 263–273 (2007)

    Article  Google Scholar 

  30. Kumari, S., Annamareddy, S.H.K., Abanti, S., Rath, P.K.: Physicochemical properties and characterization of chitosan synthesized from fish scales, crab and shrimp shells. Int. J. Biol. Macromol. 104, 1697–1705 (2017)

    Article  Google Scholar 

  31. Tyliszczak, B., Drabczyk, A., Kudłacik, S., Sobczak-Kupiec, A.: Beetosan®-Based hydrogels modified with natural substances. J. Renew. Mater. 5(3–4), 174–179 (2017)

    Article  Google Scholar 

  32. Nemtsev, S.V., Zueva, O.Y., Khismatullin, M.R., Albulov, A.I., Varlamov, V.P.: Isolation of chitin and chitosan form honeybees. Appl. Biochem. Microbiol. 40(1), 39–43 (2004)

    Article  Google Scholar 

  33. Hamdi, M., Hammami, A., Hajji, S., Jridi, M., Nasri, M., Nasri, R.: Chitin extraction from blue crab (Portunus segnis) and shrimp (Penaeus kerathurus) shells using digestive alkaline proteases from P. segnis viscera. Int. J. Biol. Macromol., 101, 455–463 (2017)

    Article  Google Scholar 

  34. Samar, M.M., El-Kalyoubi, M.H., Khalaf, M.M., El-Razik, M.M.A.: Physicochemical, functional, antioxidant and antibacterial properties of chitosan extracted from shrimp wastes by microwave technique. Ann. Agric. Sci. 58(1), 33–41 (2013)

    Google Scholar 

  35. Srinivasan, H., Velayutham, K., Ravichandran, R.: Chitin and chitosan preparation from shrimp shells Penaeus monodon and its human ovarian cancer cellline, PA–1. Int. J. Biol. Macromol. 107, 662–667 (2018)

    Article  Google Scholar 

  36. Ghorbel-Bellaaj, O., Younes, I., Maalej, H., Hajji, S., Nasri, M.: Chitin extraction from shrimp shell waste using Bacillus bacteria. Int. J. Biol. Macromol. 51, 1196–1201 (2012)

    Article  Google Scholar 

  37. Kumari, S., Rath, P., Kumar, A.S.H., Tiwari, T.N.: Extraction and characterization of chitin and chitosan from fishery waste by chemical method. Environ. Technol. Innov. 3, 77–85 (2015)

    Article  Google Scholar 

  38. Khan, F.I., Rahman, S., Queen, A., Ahamad, S., Ali, S., Kim, J., Hassan, M.I.: Implications of molecular diversity of chitin and its derivatives. Appl. Microbiol. Biotechnol. 101, 3513–3536 (2017)

    Article  Google Scholar 

  39. Lamarque, G., Cretenet, M., Viton, C., Domard, A.: New route of deacetylation of α—and β—Chitins by means of freeze—pump out—thaw cycles. Biomacromol 6, 1380–1388 (2005)

    Article  Google Scholar 

  40. Tahtat, D., Uzun, C., Mahlous, M., Guven, O.: Beneficial effect of gamma irradiation on the N-deacetylation of chitin to form chitosan. Nucl. Instrum. Methods Phys. Res. B. 265, 425–428 (2007)

    Article  Google Scholar 

  41. Duong, N.T.H., Nghia, N.D.: Effects of low-frequency ultrasound on heterogeneous deacetylation of chitin. Int. J. Biol. Macromol. 104, 1604–1610 (2017)

    Article  Google Scholar 

  42. Gagne, N., Simpson, B.K.: Use of pyrolytic enzymes to facilitate the recovery of chitin from shrimp wastes. Food Biotechnol. 7, 253–263 (1993)

    Article  Google Scholar 

  43. Gamal, R.F., El-Tayeb, T.S., Raffat, E.I., Ibrahim, H.M.M., Bashandy, A.S.: Optimization of chitin yield from shrimp shell waste by Bacillus subtilis and impact of gamma radiation on production of low molecular weight chitosan. Int. J. Biol. Macromol. 91, 598–608 (2016)

    Article  Google Scholar 

  44. Younes, I., Hajji, S., Frachet, V., Rinaudo, M., Jellouli, K., Nasri, M.: Chitin extraction from shrimp shell using enzymatic treatment. Antitumor, antioxidant and antimicrobial activities of chitosan. Int. J. Biol. Macromol., 69, 489–498 (2014)

    Article  Google Scholar 

  45. Vazquez, J.A., Noriega, D., Ramos, P., Valcarcel, J., Novoa-Carballal, R., Pastrana, L., Reis, R.L., Perez-Martin, R.I.: Optimization of high purity chitin and chitosan production from Illex argentinus pens by a combination of enzymatic and chemical processes. Carbohydr. Polym. 174, 262–272 (2017)

    Article  Google Scholar 

  46. Zhang, H., Jin, Y., Deng, Y., Wang, D., Zhao, Y.: Production of chitin from shrimp shell powders using Serratia marcescens B742 and Lactobacillus plantarum ATCC 8014 successive two-step fermentation. Carbohydr. Res. 362, 13–20 (2012)

    Article  Google Scholar 

  47. Younes, I., Ghorbel-Bellaaj, O., Nasri, R., Chaabouni, M., Rinaudo, M., Nasri, M.: Chitin and chitosan preparation from shrimp shells using optimized enzymatic deproteinization. Process Biochem. 47, 2032–2039 (2012)

    Article  Google Scholar 

  48. Sedaghat, F., Yousefzadi, M., Toiserkani, H., Najafipour, S.: Chitin from penaeus merguiensis via microbial fermentation processing and antioxidant activity. Int. J. Biol. Macromol. 82, 279–283 (2016)

    Article  Google Scholar 

  49. Hongkulsup, C., Khutoryanskiy, V., Niranjan, K.: Enzyme assisted extraction of chitin from shrimp shells (Litopenaeus vannamei). J. Chem. Technol. Biotechnol. 91(5), 1250–1256 (2016)

    Article  Google Scholar 

  50. Sadighara, P., Moghadam, H.T., Eskandari, S., Salehi, A.: Optimization of extraction of chitosan and carotenoids from shrimp waste. Int. J. Fish. Aquat. Stud. 2(5), 36–38 (2015)

    Google Scholar 

  51. Abdel-Gawad, K.M., Hiffney, A.F., Fawzy, M.A., Gomaa, M.: Technology optimization of chitosan production from Aspergillus Niger biomass and its functional activities. Food Hydrocoll. 63, 593–601 (2017)

    Article  Google Scholar 

  52. Dhillon, G.S., Kaur, S., Brar, S.K., Verma, M.: Green synthesis approach: extraction of chitosan from fungus mycelia. Crit. Rev. Biotechnol. 33(4), 379–403 (2013)

    Article  Google Scholar 

  53. Tasar, O.C., Erdal, S., Taskin, M.: Chitosan production by psychrotolerant Rhizopus oryzae in non-sterile open fermentation conditions. Int. J. Biol. Macromol. 89, 428–433 (2016)

    Article  Google Scholar 

  54. Chatterjee, S., Chatterjee, S., Chatterjee, B.P., Guha, A.K.: Enhancement of growth and chitosan production by Rhizopus oryzae in whey medium by plant growth hormones. Int. J. Biol. Macromol. 42, 120–126 (2008)

    Article  Google Scholar 

  55. Zhao, L., Xia, W.: Stainless steel membrane UF coupled with NF process for the recovery of sodium hydroxide from alkaline wastewater in chitin processing. Desalination 249, 774–780 (2009)

    Article  Google Scholar 

  56. Zhao, L., Xia, W., Zhao, H.: Cost model for chitin production alkali wastewater recovery by couple-membrane filtration. Desalin. Water Treat 28(1–3), 202–210 (2011)

    Article  Google Scholar 

  57. Nessa, F., Masum, SMd, Asaduzzaman, M., Roy, S.K., Hossain, M.M., Jahan, M.S.: A process for the preparation of chitin and chitosan from prawn shell waste. Bangladesh J. Sci. Ind. Res. 45(4), 323–330 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bożena Tyliszczak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tyliszczak, B., Drabczyk, A., Kudłacik-Kramarczyk, S., Sobczak-Kupiec, A. (2020). Sustainable Production of Chitosan. In: Królczyk, G., Wzorek, M., Król, A., Kochan, O., Su, J., Kacprzyk, J. (eds) Sustainable Production: Novel Trends in Energy, Environment and Material Systems. Studies in Systems, Decision and Control, vol 198. Springer, Cham. https://doi.org/10.1007/978-3-030-11274-5_4

Download citation

Publish with us

Policies and ethics