Skip to main content

The Biological System: Plants in the Urban Environment

  • Chapter
  • First Online:
Understanding Urban Ecology
  • 1687 Accesses

Abstract

This chapter reviews the importance of plants to the urban environment. It summarizes the conditions to which plants are subjected in the urban environment and some of the benefits they provide both physically through cleaning air and water and psychologically. It reviews briefly the history of urban flora studies and the most common spatial sampling designs used by researchers to document urban plant species over time. While the majority of past research has focused on taxonomic cataloging of the species found in cities, with a particular emphasis on native versus non-native, current urban plant ecology research questions revolve around the novel ecosystems being created in urban areas, evolution and physiological adaptation, and the role of human attitudes. Finally, we offer an energetics-based approach to understand species presence and absence as a function of their metabolic adaptation to multiple environmental gradients encountered across a heterogeneous urban landscape. Such knowledge, we propose, can help city planners, landscape architects, and citizens preserve urban ecosystem biotic structure and function in a changing world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This understanding of plant response along environmental gradients was first remarked upon by Theophrastus born circa 370 B.C.E., and then by Alexander Von Humboldt circa 1802, and furthered by the work of Robert Whittaker in the 1950s [61,62,63].

  2. 2.

    This is not to say that reestablishment of native species is not without benefits (see Tallamy and Shropshire [39]), only that if urban conditions do not favor those species, then it behooves us to plant those species that will thrive.

  3. 3.

    Some plant ecologists have called the ecological era of today the Homogocene claiming that there is a homogenization of biodiversity due to human alterations of the Earth and a unification of species that have long been separated around the globe. We would argue that their conclusions are based on taxa identification (lists of plant names) only and not on taxa richness, abundance, evenness, nor dominance which may argue for heterogeneity across the globe and across cities. We prefer the term Anthropocene to refer to the current era.

References

  1. Hughes JD (2009) An environmental history of the world: humankind’s changing role in the community of life, 2nd edn. Routledge, London

    Book  Google Scholar 

  2. Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Shahid N, O’Neill RV, Paruelo J, Raskin RG, Sutton P, van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260

    Article  CAS  Google Scholar 

  3. Kuo FE, Sullivan SW (2001) Environment and crime in the inner city: does vegetation reduce crime? Environ Behav 33(3):343–367

    Google Scholar 

  4. Ulrich R (1984) View through a window may influence recovery from surgery. Science 224:420–421

    Article  CAS  Google Scholar 

  5. Velarde MD, Fry G, Tveit M (2007) Health effects of viewing landscapes – landscape types in environmental psychology. Urban For Urban Green 6(4):199–212

    Article  Google Scholar 

  6. Louv R (2008) Last child in the woods: saving our children from nature-deficit disorder. Algonquin Books, Chapel Hill

    Google Scholar 

  7. Hall S, Huber D, Grimm N (2008) Soil N2O and NO emissions from an arid, urban ecosystem. J Geophys Res 113:G01016. https://doi.org/10.1029/2007JG000523

    Article  CAS  Google Scholar 

  8. Groffman P, Neely L, Belt K, Band L, Fisher G (2004) Nitrogen fluxes and retention in urban watershed ecosystems. Ecosystems 7:393–403

    CAS  Google Scholar 

  9. Cusak D (2013) Soil nitrogen levels are linked to decomposition enzyme activities along an urban-remote tropical forest gradient. Soil Biol Biochem 57:192–203

    Article  Google Scholar 

  10. Nowak DJ, Rowntree RA, McPherson EG, Sisinni SM, Kirkmann ER, Stevens JC (1996) Measuring and analyzing urban tree cover. Landsc Urban Plan 36(1):49–57

    Article  Google Scholar 

  11. Nowak DJ, Noble MH, Sisinni SM, Dwyer JF (2001) Assessing the US urban forest resources. J Forest 99(3):37–42

    Google Scholar 

  12. Müller N (2010) Most frequently occurring vascular plants and the role of non-native species in urban areas – a comparison of selected cities of the old and new worlds. In: Müller N, Werner P, Kelcey JG (eds) Urban biodiversity and design. Blackwell, Hoboken, pp 227–242

    Chapter  Google Scholar 

  13. Gilbert OL (1999) The ecology of urban habitats. Springer, Dordrecht

    Google Scholar 

  14. Dubos R (1968) So human an animal. Charles Scribner, New York

    Google Scholar 

  15. Ignatieva M, Stewart G (2009) Homogeneity of urban biotopes and similarity of landscape design language in former colonial cities. In: McDonnell MH, Hahs AK, Breuste JH (eds) Ecology of cities and towns: a comparative approach. Cambridge University Press, Cambridge, pp 399–421

    Chapter  Google Scholar 

  16. Steinberg T (2006) American green: the obsessive quest for the perfect lawn. W.W. Norton, New York

    Google Scholar 

  17. Greis C, Hope D, Zhu W, Fagan WF, Redman CL, Grimm NB et al (2003) Socioeconomics drive urban plant diversity. PNAS 100(15):8788–8792

    Article  Google Scholar 

  18. Pearse WD, Cavender-Bares J, Hobbie SE, Avolio ML, Bettez N, Chowdury RR et al (2018) Homogenization of plant diversity, composition, and structure in north American urban yards. Ecosphere 9(2):e02105. https://doi.org/10.1002/ecs2.2105

    Article  Google Scholar 

  19. Ignatieva M (2011) Plant material for urban landscapes in the era of globalisation: roots, challenges, and innovative solutions. In: Richter M, Weiland U (eds) Applied urban ecology: a global framework. Blackwell Publishing, Hoboken, pp 139–161

    Chapter  Google Scholar 

  20. Panarolis D (1643) Plantarum amphitheatralium catalogus. Typis Dominici Marciani, Rome

    Google Scholar 

  21. Schouw J (1823) Grundtræk til en almindelig Plantegeographie (Foundations to a general geography of plants). Gyldendalske Boghandels Forlag Copenhagen, Copenhagen

    Google Scholar 

  22. Chamisso AV (1827) Übersicht der nutzbarsten und der schädlichsten Gewächse, welche wild oder angebaut in Norddeutschland vorkommen. In: Nebst Ansichten von der Pflanzenkunde und dem Pflanzenreiche. Ferdinand Dümmler, Berlin, p 376. Source: Sukopp, 48

    Google Scholar 

  23. Celka Z (2011) Relics of cultivation in the vascular flora of medieval west Slavic settlements and castles. Biodivers Res Conserv 22(1):1–110. https://doi.org/10.2478/v10119-011-0011-0

    Article  Google Scholar 

  24. Müller N, Ignatieva M, Nilon CH, Werner P, Zipperer WC (2013) Patterns and trends in urban biodiversity and landscape design. In: Elmqvist T et al (eds) Urbanization, biodiversity and ecosystem services: challenges and opportunities. Springer, Dordrecht

    Google Scholar 

  25. Murphy DJ, Hall MH, Hall CA, Heisler GM, Stehman SV, Anselmo C (2011) The relationship between land cover and the urban heat island in northeastern Puerto Rico. Int J Climatol 31:1222–1239

    Article  Google Scholar 

  26. Ramenski LG (1928) On the method of comparative treatment and systematization of lists of plants and other objects determined by several factors with unlike actions (In Russian). In: Trudy Sovesch, geobot.-lugov., sozvan. (Gos.) lugovoi Inst, p 15–20

    Google Scholar 

  27. Ramenski L (1924) Basic regularities of vegetation covers and their study In Russian. In: Ob.-Voronezh: Vestnik Opytnogo de la Stredne-Chernoz, p 37–73

    Google Scholar 

  28. Godefroid S, Koedam N (2003) Distribution pattern of the flora in a peri-urban forest: an effect of the city-forest ecotone. Landsc Urban Plan 65:169–185

    Article  Google Scholar 

  29. Richards NA, Mallette JR, Simpson RJ, Macie EA (1984) Residential Greenspace and vegetation in a Mature City: Syracuse, New York. Urban Ecol 8:99–125

    Article  Google Scholar 

  30. Palmer JF (1984) Neighborhoods as stands in the urban forest. Urban Ecol 8:299–241

    Google Scholar 

  31. US Forest Service FIA (2018) Forest inventory and analysis national program. https://www.fia.fs.fed.us/. Accessed 11 Mar 2018

  32. Ramenski LG (1938) Introduction to the complex soil-geobotanical investigation of lands. Selkhozgiz, Moscow

    Google Scholar 

  33. Grime JP (1979) Plant strategies and vegetation processes. Wiley, Chichester

    Google Scholar 

  34. Clements FE (1916) Plant succession: an analysis of the development of vegetation. Carnegie Institution of Washington, Washington

    Book  Google Scholar 

  35. Gleason HA (1926) The individualistic concept of the plant association. The Bulletin of the Torrey Botanical Club, New York

    Book  Google Scholar 

  36. Sukopp H (2003) Flora and vegetation reflecting the urban history of Berlin. Erde 3:295–316

    Google Scholar 

  37. Given D, Spellerberg I (eds) (2004) Going native: making use of New Zealand plants. Canterbury University Press, Christchurch

    Google Scholar 

  38. Del Tredici P (2010) Spontaneous urban vegetation: reflections of change in a globalized world. Nat Cult 5(3):299–315. https://doi.org/10.3167/nc.2010.050305

    Article  Google Scholar 

  39. Tallamy DW, Shropshire KJ (2009) Ranking Lepidopteran use of native versus introduced plants. Cons Bio 23(4):941–947. https://doi.org/10.1111/j.1523-1739.2009.01202.x

    Article  Google Scholar 

  40. Bleeker W, Schmitz U, Ristow M (2007) Interspecific hybridization between alien and native plant species in Germany and its consequences for native biodiversity. Biol Conserv 137:248–253

    Article  Google Scholar 

  41. White OE, Bowden WM (1947) Oriental and American bittersweet hybrids. J Hered 38(4):125–128

    Article  CAS  Google Scholar 

  42. Schierenbeck KA, Ellstrand NC (2009) Hybridization and the evolution of invasiveness in plants. Biolog Invasions 11:1093–1105

    Article  Google Scholar 

  43. Donihue CM, Lambert MR (2015) Adaptive evolution in urban ecosystems. Ambio 44:194–203. https://doi.org/10.1007/s13280-014-0547-2

    Article  PubMed  Google Scholar 

  44. Brune M (2016) Urban trees under climate change: potential impacts of dry spells and heat waves in three German regions in the 2050s. Climate Service Center Germany, Hamburg. Report No.: 24

    Google Scholar 

  45. Baptiste A, Foley C, Smardon R (2015) Understanding urban neighborhood differences in willingness to implement green infrastructure measures: a case study of Syracuse, NY. Landsc Urban Plan 136:1–12

    Article  Google Scholar 

  46. Sun N, Hall M (2016) Coupling human preferences with biophysical processes: modeling the effect of citizen attitudes on potential urban stormwater runoff. Urban Ecosyst 19(4):1433–1454. https://doi.org/10.1007/s11252-013-0304-5

    Article  Google Scholar 

  47. Melendez-Ackerman EJ, Nytch CJ, Santiago-Acevedo LE, Verdejo-Ortiz JC, Bartolomei RS, Ramos-Santiago LE et al (2016) Synthesis of household yard area dynamics in the City of San Juan using multi-scalar social-ecological perspectives. Sustainability 8(5):481. https://doi.org/10.3390/su8050481

    Article  Google Scholar 

  48. Hall CAS, Stanford J, Hauer R (1992) The distribution and abundance of organisms as a consequence of energy balances along multiple environmental gradients. Oikos 65(3):377–390

    Article  Google Scholar 

  49. Whittaker RH (1967) Gradient analysis of vegetation. Biol Rev 49:207–264. https://doi.org/10.1111/j.1469-185X.1967.tb01419.x

    Article  Google Scholar 

  50. Craul PJ (1999) Urban soils: applications and practices. Wiley, New York

    Google Scholar 

  51. Smith BA (1943) A tree grows in Brooklyn. Harper & Brothers, New York

    Google Scholar 

  52. Kowarik I (2003) Biologische Invasionen – Neophyten und Neozoen in Mitteleuropa (in German). Verlag Eugen Ulmer, Stuttgart. ISBN 3-8001-3924-3 (Source: Wikipedia, https://en.wikipedia.org/wiki/Ailanthus_altissima. Accessed 21 Oct 2018

    Google Scholar 

  53. Duncan RP, Clemants SE, Corlett RT, Hahs AK, McCarthy MA, McDonnell MJ et al (2011) Plant traits and extinction in urban areas: a meta-analysis of 11 cities. Glob Ecol Biogeogr 20:509–519

    Article  Google Scholar 

  54. Kowarik I (2011) Novel urban ecosystems, biodiversity, and conservation. Environ Pollut 159:1974–1983. https://doi.org/10.1016/j.envpol.2011.02.022

    Article  CAS  PubMed  Google Scholar 

  55. Lugo AE, Brandeis TJ (2005) New mix of alien and native species coexists in Puerto Rico’s landscapes. In: Burslem DFRP, Pinard MA, Hartley SE (eds) Biotic interactions in the tropics: their role in the maintenance of species diversity. Cambridge University Press, Cambridge, pp 484–509

    Chapter  Google Scholar 

  56. Pyšek P (1995) Approaches to studying spontaneous settlement flora and vegetation in Central Europe: a review. In: Sukopp H, Numata M, Huber A (eds) Urban ecology as the basis of urban planning. SPB Academic Publ, Amsterdam, pp 23–39

    Google Scholar 

  57. Lugo AE (2010) Let’s not forget biodiversity of the cities. Biotropica 42(5):576–577

    Article  Google Scholar 

  58. Lugo AE, Winchell KM, Carlo TA (2018) Novelty in ecosystems. In: DellaSala DA, Goldstein MI (eds) The encyclopedia of the anthropocene, vol 3. Elsevier, Oxford, pp 259–271

    Chapter  Google Scholar 

  59. Craul TA, Craul PJ (2006) Introduction to the soil. In: Craul TA, Craul PJ (eds) Soil design protocols for landscape architects and contractors. Wiley, New York, pp 1–28

    Google Scholar 

  60. Palmer MW (2018) Ordination methods for ecologists: Oklahoma: Oklahoma State University, Botany Department., http://ordination.okstate.edu/COENOSPA.htm. Accessed 24 Oct 2018

  61. Theophrastus (1916) Enquiry into Plants, Vol. 1, Books 1–5. Translated by A. F. Hort, 1916. Loeb Classical Library 70. Harvard University Press, Cambridge

    Google Scholar 

  62. Wulf A (2015) The invention of nature: Alexander Von Humboldt’s New World. Vantage, New York

    Google Scholar 

  63. Whittaker R (1956) Vegetation of the Great Smoky Mountains. Ecol Monogr 26(1):1–80. https://doi.org/10.2307/1943577

    Article  Google Scholar 

Download references

Acknowledgement

Thank you to Dr. Ariel Lugo, forest ecologist, and Dr. Catherine Landis, botanist, for their thoughtful, probing, and insightful reviews that helped shape and enrich this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myrna H. P. Hall .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hall, M.H.P. (2019). The Biological System: Plants in the Urban Environment. In: Hall, M., Balogh, S. (eds) Understanding Urban Ecology. Springer, Cham. https://doi.org/10.1007/978-3-030-11259-2_11

Download citation

Publish with us

Policies and ethics