Skip to main content

The Automatic Method of Technical Condition Change Detection for LHD Machines - Engine Coolant Temperature Analysis

  • Conference paper
  • First Online:

Part of the book series: Applied Condition Monitoring ((ACM,volume 15))

Abstract

In the paper the long-term temperature data from LHD (load, haul, dump) machine from underground copper ore mine are analyzed. The main problem is to detect the moment when the temperature increases due to change of condition. Usually in condition monitoring system the problem is solved by selection of fixed threshold and observation if the temperature data exceeds this limit value. However this approach seems to be insufficient for the real data that are influenced by various factors related to harsh operating conditions in underground mine. In case of change of technical condition, events of exceeded temperature do not occur locally in time but affect the statistical properties of the temperature data for longer period of time. The key task could be defined as identification so called structural break point in raw signal based on statistical analysis in longer time window. In this paper a new method for detection of the structural break point of temperature data from LHD machine based on regime variance approach is presented. The data are investigated here as signals with two regimes behavior (good/bad condition). We select the most suitable critical point in order to separate different regimes. The introduced methodology is fully automatic and is based on simple statistics of the temperature signal.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cutifani M, Quinn B, Gurgenci H (1996) Increased equipment reliability, safety and availability without necessarily increasing the cost of maintenance. In: Mining technology conference, Freemantle, WA, pp 10–1

    Google Scholar 

  2. Gustafson A, Schunnesson H, Galar D, Kumar U (2013) The influence of the operating environment on manual and automated load-haul-dump machines: a fault tree analysis. Int J Mining Reclam Environ 27(2):75–87

    Article  Google Scholar 

  3. Kumar U (1990) Reliability analysis of load-haul-dump machines. Ph.D. thesis, Luleå tekniska universitet

    Google Scholar 

  4. Stefaniak P, Zimroz R, Obuchowski J, Sliwinski P, Andrzejewski M (2015) An effectiveness indicator for a mining loader based on the pressure signal measured at a bucket’s hydraulic cylinder. Procedia Earth Planet Sci 15:797–805

    Article  Google Scholar 

  5. Zimroz R, Wodecki J, Król R, Andrzejewski M, Sliwinski P, Stefaniak P (2014) Self-propelled mining machine monitoring system-data validation, processing and analysis. In: Drebenstedt C, Singhal R (eds) Mine planning and equipment selection. Springer, Heidelberg, pp 1285–1294

    Chapter  Google Scholar 

  6. Gustafson A, Lipsett M, Schunnesson H, Galar D, Kumar U (2014) Development of a Markov model for production performance optimisation. Application for semi-automatic and manual LHD machines in underground mines. Int J Mining Reclam Environ 28(5):342–355

    Article  Google Scholar 

  7. Gustafson A, Schunnesson H, Galar D, Kumar U (2013) Production and maintenance performance analysis: manual versus semi-automatic LHDs. J Qual Maintenance Eng 19(1):74–88

    Article  Google Scholar 

  8. Laukka A, Saari J, Ruuska J, Juuso E, Lahdelma S (2016) Condition-based monitoring for underground mobile machines. Int J Industr Syst Eng 23(1):74–89

    Article  Google Scholar 

  9. Wyłomańska A, Zimroz R (2014) Signal segmentation for operational regimes detection of heavy duty mining mobile machines-a statistical approach. Diagnostyka 15

    Google Scholar 

  10. Sawicki M, Zimroz R, Wyłomańska A, Obuchowski J, Stefaniak P, Żak G (2015) An automatic procedure for multidimensional temperature signal analysis of a SCADA system with application to belt conveyor components. Procedia Earth Planet Sci 15:781–790

    Article  Google Scholar 

  11. Wodecki J, Stefaniak P, Michalak A, Wyłomańska A, Zimroz R (2017) Technical condition change detection using Anderson-Darling statistic approach for LHD machines-engine overheating problem. Int J Mining Reclam Environ 32:392–400

    Article  Google Scholar 

  12. Kucharczyk D, Wyłomańska A, Zimroz R (2017) Structural break detection method based on the adaptive regression splines technique. Phys A: Stat Mech Appl 471:499–511

    Article  MathSciNet  Google Scholar 

  13. Gajda J, Sikora G, Wyłomańska A (2013) Regime variance testing - a quantile approach. Acta Phys Polon B 44(5):1015–1035

    Article  MathSciNet  Google Scholar 

  14. Tsay RS (1988) Outliers, level shifts, and variance changes in time series. J Forecast 7(1):1–20

    Article  Google Scholar 

  15. Wyłomańska A, Zimroz R, Janczura J, Obuchowski J (2016) Impulsive noise cancellation method for copper ore crusher vibration signals enhancement. IEEE Trans Industr Electron 63(9):5612–5621

    Article  Google Scholar 

  16. Lopatka M, Laplanche C, Adam O, Motsch JF, Zarzycki J (2005) Non-stationary time-series segmentation based on the Schur prediction error analysis. In: 2005 IEEE/SP 13th workshop on statistical signal processing. IEEE, pp 251–256

    Google Scholar 

  17. Makowski R, Zimroz R (2013) A procedure for weighted summation of the derivatives of reflection coefficients in adaptive Schur filter with application to fault detection in rolling element bearings. Mech Syst Sig Process 38(1):65–77

    Article  Google Scholar 

  18. Makowski R, Zimroz R (2014) New techniques of local damage detection in machinery based on stochastic modelling using adaptive Schur filter. Appl Acoust 77:130–137

    Article  Google Scholar 

  19. Li C, Liang M, Wang T (2015) Criterion fusion for spectral segmentation and its application to optimal demodulation of bearing vibration signals. Mech Syst Sig Process 64:132–148

    Article  Google Scholar 

  20. Popescu TD, Aiordachioaie D (2013) Signal segmentation in time-frequency plane using Renyi entropy-application in seismic signal processing. In: 2013 conference on control and fault-tolerant systems (SysTol). IEEE, pp 312–317

    Google Scholar 

  21. Obuchowski J, Wyłomańska A, Zimroz R (2014) Selection of informative frequency band in local damage detection in rotating machinery. Mech Syst Sig Process 48(1):138–152

    Article  Google Scholar 

  22. Crossman JA, Guo H, Murphey YL, Cardillo J (2003) Automotive signal fault diagnostics-part i: signal fault analysis, signal segmentation, feature extraction and quasi-optimal feature selection. IEEE Trans Veh Technol 52(4):1063–1075

    Article  Google Scholar 

  23. Chen C (1984) On a segmentation algorithm for seismic signal analysis. Geoexploration 23(1):35–40

    Article  Google Scholar 

  24. Gaby JE, Anderson KR (1984) Hierarchical segmentation of seismic waveforms using affinity. Geoexploration 23(1):1–16

    Article  Google Scholar 

  25. Popescu TD (2014) Signal segmentation using changing regression models with application in seismic engineering. Digit Sig Process 24:14–26

    Article  Google Scholar 

  26. Pikoulis EV, Psarakis EZ (2012) A new automatic method for seismic signals segmentation. In: 2012 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, pp 3973–3976

    Google Scholar 

  27. Azami H, Mohammadi K, Bozorgtabar B (2012) An improved signal segmentation using moving average and Savitzky-Golay filter. J Sig Inf Process 3(01):39

    Google Scholar 

  28. Bowman AW, Azzalini A (1997) Applied smoothing techniques for data analysis: the kernel approach with S-Plus illustrations, vol 18. OUP, Oxford

    Google Scholar 

  29. Rathi Y, Michailovich O, Malcolm J, Tannenbaum A (2006) Seeing the unseen: segmenting with distributions. In: International conference on signal and image processing

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Stefaniak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stefaniak, P., Śliwiński, P., Poczynek, P., Wyłomańska, A., Zimroz, R. (2019). The Automatic Method of Technical Condition Change Detection for LHD Machines - Engine Coolant Temperature Analysis. In: Fernandez Del Rincon, A., Viadero Rueda, F., Chaari, F., Zimroz, R., Haddar, M. (eds) Advances in Condition Monitoring of Machinery in Non-Stationary Operations. CMMNO 2018. Applied Condition Monitoring, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-030-11220-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11220-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11219-6

  • Online ISBN: 978-3-030-11220-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics