Skip to main content

Eliminating the Inertial Forces Effects on the Measurement of Robot Interaction Force

  • Conference paper
  • First Online:
Methods and Techniques of Signal Processing in Physical Measurements (MSM 2018)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 548))

Included in the following conference series:

Abstract

The paper presents the problem of eliminating the effects of inertial forces on the measurement circuit of the forces of interaction between a robotic manipulator and its environment. Inertial forces are among the most significant interferences in force measurement circuits. The causes and effects of this interference type are discussed. A concept is discussed, based on the measurement of acceleration of a manipulator end-effector. A test rig is discussed, as used for verification testing of a procedure for eliminating the effect of inertial forces on the measurement of interaction forces. Verification test results are shown which proved that the procedure is effective. The procedure developed in this work is highly significant for practical applications in robotized machining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Robin, V., Sabourin, L., Gogu, G.: Optimization of a robotized cell with redundant architecture. Robot. CIM-Int. Manuf. 27(1), 13–21 (2011). https://doi.org/10.1016/j.rcim.2010.06.010

    Article  Google Scholar 

  2. Barnfather, J.D., Goodfellow, M.J., Abram, T.: A performance evaluation methodology for robotic machine tools used in large volume manufacturing. Robot. CIM-Int. Manuf. 37, 49–56 (2016). https://doi.org/10.1016/j.rcim.2015.06.002

    Article  Google Scholar 

  3. Johansson, R., Nilsson, K., Robertsson, A.: Force control. In: Nee, A. (eds) Handbook of Manufacturing Engineering and Technology. Springer, London (2015). https://doi.org/10.1007/978-1-4471-4670-4_108

    Google Scholar 

  4. Stefanescu, D. M., Anghel, M. A.: Electrical methods for force measurement-a brief survey. Measurement 46(2), 949–959 (2013). https://doi.org/10.1016/j.measurement.2012.10.020

    Article  Google Scholar 

  5. Cutkosky, M.R., Provancher, W.: Force and tactile sensing. In: Siciliano B., Khatib O. (eds) Springer Handbook of Robotics. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32552-1_28

    Chapter  Google Scholar 

  6. Gierlak, P.: Hybrid position/force control in robotised machining. Sol. St. Phen. 210, 192–199 (2014). https://doi.org/10.4028/www.scientific.net/SSP.210.192

    Article  Google Scholar 

  7. Gierlak, P., Burghardt, A., Szybicki, D., Szuster, M., Muszyska, M.: On-line manipulator tool condition monitoring based on vibration analysis. Mech. Syst. Signal Proc. 89, 14–26 (2017). https://doi.org/10.1016/j.ymssp.2016.08.002

    Article  Google Scholar 

  8. Hendzel, Z., Burghardt, A., Gierlak, P., Szuster, M.: Conventional and fuzzy force control in robotised machining. Sol. St. Phen. 210, 178–185 (2014). https://doi.org/10.4028/www.scientific.net/SSP.210.178

    Article  Google Scholar 

  9. Burghardt, A., Szybicki, D., Kurc, K., Muszyska, M., Mucha, J.: Experimental study of Inconel 718 surface treatment by edge robotic Deburring with force control. Strength Mater 49(4), 594–604 (2017). https://doi.org/10.1007/s11223-017-9903-3

    Article  Google Scholar 

  10. Kumar, H., Sharma, C., Kumar, A., Arora, P. K.: Retrospective investigations of force measurement. MAPAN 30(4), 291–302 (2015). https://doi.org/10.1007/s12647-015-0148-y

    Article  Google Scholar 

  11. Kumar, R., Pant, B. D., Maji, S.: Development and characterization of a diaphragm-shaped force transducer for static force measurement. MAPAN, 32(3), 167–174 (2017). https://doi.org/10.1007/s12647-017-0207-7

    Article  Google Scholar 

  12. Shimachi, S., Hakozaki, Y., Tada, T., Fujiwara, Y.: Measurement of force acting on surgical instrument for force-feedback to master robot console. In: International Congress Series, vol. 1256, pp. 538–546. Elsevier (2003). https://doi.org/10.1016/S0531-5131(03)00356-X

    Article  Google Scholar 

  13. Shimachi, S., Fujiwara, Y., Hakozaki, Y.: New sensing method of force acting on instrument for laparoscopic robot surgery. In: International Congress Series, vol. 1268, pp. 775–780. Elsevier (2004). https://doi.org/10.1016/j.ics.2004.03.310

    Article  Google Scholar 

  14. Shimachi, S., Kameyama, F., Hakozaki, Y., Fujiwara, Y.: Contact force measurement of instruments for force-feedback on a surgical robot: acceleration force cancellations based on acceleration sensor readings. In: Duncan, J.S., Gerig, G. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2005. MICCAI 2005. LNCS, vol. 3750, pp. 97–104. Springer, Berlin, Heidelberg (2005). https://doi.org/10.1007/11566489_13

    Google Scholar 

  15. Tutak, J. S.: Virtual reality and exercises for paretic upper limb of stroke survivors. Tehniki vjesnik-Technical Gazette 24(2), 451–458 (2017). https://doi.org/10.17559/TV-20161011143721

  16. Giergiel, J., Kurc, K.: Identification of the mathematical model of an inspection mobile robot with fuzzy logic systems and neural networks. J. Theor. App. Mech. 49, 209–225 (2011)

    Google Scholar 

  17. Burghardt, A., Kurc, K., Szybicki, D., Muszyska, M., Nawrocki, J.: Software for the robot-operated inspection station for engine guide vanes taking into consideration the geometric variability of parts. Tehnicki Vjesnik-Technical Gazette 24(2), 349–353 (2017). https://doi.org/10.17559/TV-20160820142224

  18. Gierlak, P.: The manipulator tool state classification based on inertia forces analysis. Mech. Syst. Signal Proc. 107, 122–136 (2018). https://doi.org/10.1016/j.ymssp.2018.01.002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Gierlak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gierlak, P., Burghardt, A., Szybicki, D., Kurc, K. (2019). Eliminating the Inertial Forces Effects on the Measurement of Robot Interaction Force. In: Hanus, R., Mazur, D., Kreischer, C. (eds) Methods and Techniques of Signal Processing in Physical Measurements. MSM 2018. Lecture Notes in Electrical Engineering, vol 548. Springer, Cham. https://doi.org/10.1007/978-3-030-11187-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11187-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11186-1

  • Online ISBN: 978-3-030-11187-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics