Skip to main content

Triangular Forms

  • Chapter
  • First Online:
Observer Design for Nonlinear Systems

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 479))

  • 998 Accesses

Abstract

In this chapter, triangular forms are considered, namely systems made of a cascade of integrators, and of nonlinearities depending in a triangular way on the state. In order to observe those systems, it is standard to use a high gain in the correction terms, which is able to compensate for the nonlinearities if taken sufficiently large. The structure–homogeneity–of the correction terms must be adapted to the regularity of the nonlinearities–Lipschitz, Hölder, continuous.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Definition 1.2.

  2. 2.

    This property can be relaxed: See Sect. 4.1.5.

  3. 3.

    See Sect. 4.1.5.

  4. 4.

    This may be relaxed: See Sect. 4.1.5.

  5. 5.

    If \(\xi _1\) is a block of dimension \({d_y}\), those notations apply component-wise, namely \(\left\lfloor a\right\rceil ^{b}=(\left\lfloor a_1\right\rceil ^{b},\ldots ,\left\lfloor a_m\right\rceil ^{b})^\top \).

  6. 6.

    See Remark 1.1.

  7. 7.

    See Remark 1.1.

  8. 8.

    The saturation function is defined on \(\mathbb {R}\) by \( \mathsf {sat}_a(x)=\max \{\min \{x, a\},-a\} \ . \)

  9. 9.

    Section 4.1.5 is reproduced from [6] with permission from Elsevier.

  10. 10.

    By strictly contained, we mean that \({\tilde{\mathscr {M}}}\) is contained in the interior of \(\mathscr {M}\).

  11. 11.

    Let \(\varDelta \varPhi _3(\xi _1,\xi _3,e_1,e_3)= |\xi _3+e_3+\xi _1+e_1|^{\frac{4}{5}}\left\lfloor \xi _1+e_1\right\rceil ^{\frac{1}{5}}- |\xi _3+\xi _1|^{\frac{4}{5}} \left\lfloor \xi _1\right\rceil ^{\frac{1}{5}}=|\xi _3+\xi _1|^{\frac{4}{5}}\left( \left\lfloor \xi _1+e_1\right\rceil ^{\frac{1}{5}}-\left\lfloor \xi _1\right\rceil ^{\frac{1}{5}}\right) + \left\lfloor \xi _1+e_1\right\rceil ^{\frac{1}{5}}\left( |\xi _3+\xi _1+e_3+e_1|^{\frac{4}{5}}-|\xi _3+\xi _1|^{\frac{4}{5}}\right) \). By Lemma A.5, we have \(\left| \left\lfloor \xi _1+e_1\right\rceil ^{\frac{1}{5}}-\left\lfloor \xi _1\right\rceil ^{\frac{1}{5}}\right| \le 2^{\frac{4}{5}}|e_1|^{\frac{1}{5}}\) and \(\left| |\xi _3+\xi _1+e_3+e_1|^{\frac{4}{5}}-|\xi _3+\xi _1|^{\frac{4}{5}}\right| \le 2^{\frac{1}{5}}(|e_3|+|e_1|)^{\frac{4}{5}}\le 2^{\frac{1}{5}}(|e_3|^{\frac{4}{5}}+|e_1|^{\frac{4}{5}})\). Besides, \(|\xi _1+e_1|^{\frac{1}{5}}\le |\xi _1|^{\frac{1}{5}}+|e_1|^{\frac{1}{5}}\), so that for \(\xi _1\) and \(\xi _3\) in compact sets, \(|\varDelta \varPhi _3(\xi _1,\xi _3,e_1,e_3)|\le c_1|e_1|^{\frac{1}{5}}+c_2|e_3|^{\frac{4}{5}}+c_3|e_1|^{\frac{4}{5}}+c_4|e_1|^{\frac{1}{5}}|e_3|^{\frac{4}{5}}+c_5|e_1|\). By Young’s inequality, \(|e_1|^{\frac{1}{5}}|e_3|^{\frac{4}{5}}\le \frac{1}{5}|e_1|+\frac{4}{5}|e_3|\), and finally, for \(e_1\) and \(e_3\) in compact sets, \(|\varDelta \varPhi _3(\xi _1,\xi _3,e_1,e_3)|\le {\tilde{c}}_1|e_1|^{\frac{1}{5}} +{\tilde{c}}_3|e_3|^{\frac{4}{5}}\).

  12. 12.

    See Definition 2.1.

References

  1. Andrieu, V., Praly, L., Astolfi, A.: Nonlinear output feedback design via domination and generalized weighted homogeneity. In: IEEE Conference on Decision and Control (2006)

    Google Scholar 

  2. Andrieu, V., Praly, L., Astolfi, A.: Homogeneous approximation, recursive observer design, and output feedback. SIAM J. Control Optim. 47(4), 1814–1850 (2008)

    Article  MathSciNet  Google Scholar 

  3. Andrieu, V., Praly, L., Astolfi, A.: High gain observers with updated gain and homogeneous correction terms. Automatica 45(2), 422–428 (2009)

    Article  MathSciNet  Google Scholar 

  4. Astolfi, A., Praly, L.: Global complete observability and output-to-state stability imply the existence of a globally convergent observer. Math. Control Signals Syst. 18(1), 1–34 (2005)

    MathSciNet  MATH  Google Scholar 

  5. Barbot, J., Boukhobza, T., Djemai, M.: Sliding mode observer for triangular input form. In: IEEE Conference on Decision and Control, vol. 2, pp. 1489–1490 (1996)

    Google Scholar 

  6. Bernard, P., Praly, L., Andrieu, V.: Observers for a non-Lipschitz triangular form. Automatica 82, 301–313 (2017)

    Article  MathSciNet  Google Scholar 

  7. Besançon, G.: Further results on high gain observers for nonlinear systems. In: IEEE Conference on Decision and Control, vol. 3, pp. 2904–2909 (1999)

    Google Scholar 

  8. Besançon, G., Ticlea, A.: An immersion-based observer design for rank-observable nonlinear systems. IEEE Trans. Autom. Control 52(1), 83–88 (2007)

    Article  MathSciNet  Google Scholar 

  9. Bornard, G., Hammouri, H.: A high gain observer for a class of uniformly observable systems. In: IEEE Conference on Decision and Control (1991)

    Google Scholar 

  10. Cruz-Zavala, E., Moreno, J.A.: Lyapunov functions for continuous and discontinuous differentiators. In: IFAC Symposium on Nonlinear Control Systems (2016)

    Google Scholar 

  11. Emelyanov, S., Korovin, S., Nikitin, S., Nikitina, M.: Observers and output differentiators for nonlinear systems. Doklady Akademii Nauk 306, 556–560 (1989)

    MATH  Google Scholar 

  12. Filippov, A.: Differential Equations with Discontinuous Right-hand Sides. Mathematics and its applications. Kluwer Academic Publishers Group, Dordrecht (1988)

    Book  Google Scholar 

  13. Gauthier, J.P., Bornard, G.: Observability for any u(t) of a class of nonlinear systems. IEEE Trans. Autom. Control 26, 922–926 (1981)

    Article  MathSciNet  Google Scholar 

  14. Gauthier, J.P., Hammouri, H., Othman, S.: A simple observer for nonlinear systems application to bioreactors. IEEE Trans. Autom. Control 37(6), 875–880 (1992)

    Article  MathSciNet  Google Scholar 

  15. Gauthier, J.P., Kupka, I.: Deterministic Observation Theory and Applications. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  16. Hammouri, H., Bornard, G., Busawon, K.: High gain observer for structured multi-output nonlinear systems. IEEE Trans. Autom. Control 55(4), 987–992 (2010)

    Article  MathSciNet  Google Scholar 

  17. Khalil, H.K., Praly, L.: High-gain observers in nonlinear feedback control. Int. J. Robust. Nonlinear Control 24 (2013)

    Article  MathSciNet  Google Scholar 

  18. Levant, A.: Higher-order sliding modes and arbitrary-order exact robust differentiation. In: Proceedings of the European Control Conference, pp. 996–1001 (2001b)

    Google Scholar 

  19. Levant, A.: Higher-order sliding modes, differentiation and output-feedback control. Int. J. Control 76(9–10), 924–941 (2003)

    Article  MathSciNet  Google Scholar 

  20. Levant, A.: Homogeneity approach to high-order sliding mode design. Automatica 41(5), 823–830 (2005)

    Article  MathSciNet  Google Scholar 

  21. Ortiz-Ricardez, F.A., Sanchez, T., Moreno, J.A.: Smooth lyapunov function and gain design for a second order differentiator. In: IEEE Conference on Decision and Control, pp. 5402–5407 (2015)

    Google Scholar 

  22. Praly, L., Jiang, Z.: Linear output feedback with dynamic high gain for nonlinear systems. Syst. Control Lett. 53, 107–116 (2004)

    Article  MathSciNet  Google Scholar 

  23. Qian, C.: A homogeneous domination approach for global output feedback stabilization of a class of nonlinear systems. In: Proceedings of the American Control Conference (2005)

    Google Scholar 

  24. Qian, C.: A homogeneous domination approach for global output feedback stabilization of a class of nonlinear systems. In: IEEE American Control Conference, pp. 4708–4715 (2005)

    Google Scholar 

  25. Qian, C., Lin, W.: Recursive observer design, homogeneous approximation, and nonsmooth output feedback stabilization of nonlinear systems. IEEE Trans. Autom. Control 51(9) (2006)

    Article  MathSciNet  Google Scholar 

  26. Sanfelice, R., Praly, L.: On the performance of high-gain observers with gain adaptation under measurement noise. Automatica 47, 2165–2176 (2011)

    Article  MathSciNet  Google Scholar 

  27. Smirnov, G.: Introduction to the Theory of Differential Inclusions. Graduate studies in mathematics, vol. 41. American Mathematical Society, Providence (2001)

    Google Scholar 

  28. Tornambe, A.: Use of asymptotic observers having high gains in the state and parameter estimation. In: IEEE Conference on Decision and Control, vol. 2, pp. 1791–1794 (1989)

    Google Scholar 

  29. Yang, B., Lin, W.: Homogeneous observers, iterative design, and global stabilization of high-order nonlinear systems by smooth output feedback. IEEE Trans. Autom. Control 49(7), 1069–1080 (2004)

    Article  MathSciNet  Google Scholar 

  30. Zeitz, M.: Observability canonical (phase-variable) form for nonlinear time-variable systems. Int. J. Syst. Sci. 15(9), 949–958 (1984)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pauline Bernard .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bernard, P. (2019). Triangular Forms. In: Observer Design for Nonlinear Systems. Lecture Notes in Control and Information Sciences, vol 479. Springer, Cham. https://doi.org/10.1007/978-3-030-11146-5_4

Download citation

Publish with us

Policies and ethics