Skip to main content

Participation of Hydrogen Peroxide and Nitric Oxide in Improvement of Seed Germination Performance Under Unfavourable Conditions

  • Chapter
  • First Online:

Abstract

Seed germination is a complex process. Upon imbibition, many factors including phytohormones (gibberellin and abscisic acid) and reactive oxygen and nitrogen species [hydrogen peroxide (H2O2) and nitric oxide (NO), respectively] are involved in a complicated web of interactions. While there are some impressive recent progresses made in our understanding of these interactions, it is also of great interest to investigate treatments that help seeds with difficulties to germinate under unfavourable conditions including abiotic stress factors such as chilling and heavy metals. In this chapter, an update and critical interpretations of some recent investigations into the relationships among H2O2, NO, catalase activity and gene expression in cold stratification, light signal and abiotic stress are provided.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Amooaghaie R, Tabatabaie F (2017) Osmopriming-induced salt tolerance during seed germination of alfalfa most likely mediates through H2O2 signaling and upregulation of heme oxygenase. Protoplasma 254:1791–1803

    Article  CAS  Google Scholar 

  • An CF, Zhou CJ (2017) Light induces lettuce seed germination through promoting nitric oxide production and phospholipase D-derived phosphatidic acid formation. South Afr J Bot 108:416–422

    Article  CAS  Google Scholar 

  • Bethke PC, Gubler F, Jacobsen JV, Jones RL (2004) Dormancy of Arabidopsis seeds and barley grains can be broken by nitric oxide. Planta 219:847–855

    Article  CAS  Google Scholar 

  • Bewley DJ, Bradford KJ, Hilhorst HWM, Nonogaki H (2013) Seeds: physiology of development, germination, and dormancy. Springer, New York

    Book  Google Scholar 

  • Bi C, Ma Y, Yu YT, Liang S, Lu K, Wang XF (2017) Arabidopsis ABI5 plays a role in regulating ROS homeostasis by activating CATALASE 1 transcription in seed germination. Plant Mol Biol 94:197–213

    Article  CAS  Google Scholar 

  • Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and control of seed germination. New Phytol 171:501–523

    Article  CAS  Google Scholar 

  • Finkelstein RR, Lynch TJ (2000) The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell 12:599–609

    Article  CAS  Google Scholar 

  • Ishibashi Y, Aoki N, Kasa S, Sakamoto M, Kai K, Tomokiyo R, Watabe G, Yuasa T, Iwaya-Inoue MI (2017) The interrelationship between abscisic acid and reactive oxygen species plays a key role in barley seed dormancy and germination. Front Plant Sci 8:275

    Article  Google Scholar 

  • Kepczynski J, Cembrowska-Lech D, Sznigir P (2017) Interplay between nitric oxide, ethylene, and gibberellic acid regulating the release of Amaranthus retroflexus seed dormancy. Acta Physiol Plant 39:254

    Article  Google Scholar 

  • Li WY, Chen BX, Chen ZJ, Gao YT, Chen Z, Liu J (2017a) Reactive oxygen species generated by NADPH oxidases promote radicle protrusion and elongation during rice seed germination. Int J Mol Sci 18:110

    Article  Google Scholar 

  • Li Z, Xu J, Gao Y, Wang C, Guo G, Luo Y, Huang Y, Hu W, Sheteiwy MS, Guan Y, Hu J (2017b) The synergistic priming effect of exogenous salicylic acid and H2O2 on chilling tolerance enhancement during maize (Zea mays L.) seed germination. Front Plant Sci 8:1153

    Article  Google Scholar 

  • Li R, Jia Y, Yu L, Yang W, Chen Z, Chen H, Hu X (2018) Nitric oxide promotes light-initiated seed germination by PIF1 expression and stabilizing HFR1. Plant Physiol Biochem 123:204–212

    Article  CAS  Google Scholar 

  • Lu Q, Zhang ZS, Zhan RT, He R (2018) Proteomic analysis of Zanthoxylum nitidum seeds dormancy release: influence of stratification and gibberellin. Ind Crop Prod 122:7–15

    Article  CAS  Google Scholar 

  • Mao C, Zhu Y, Chen H, Yan H, Zhao L, Tang J, Ma X, Mao P (2018) Nitric acid oxide regulates seedling growth and mitochondrial responses in aged oat seeds. Int J Mol Sci 19:1052

    Article  Google Scholar 

  • Nelson SK, Steber CM (2017) Transcriptional mechanisms associated with seed dormancy and dormancy loss in gibberellin-insensitive sly1-2 mutant of Arabidopsis thaliana. PLoS One 12:e0179143

    Article  Google Scholar 

  • Nonogaki H (2014) Seed dormancy and germination-emerging mechanisms and new hypotheses. Front Plant Sci 5:233

    Article  Google Scholar 

  • Nonogaki H (2017) Seed biology updates-highlights and new discoveries in seed dormancy and germination research. Front Plant Sci 8:524

    PubMed  PubMed Central  Google Scholar 

  • Panngom K, Chuesaard T, Tamchan N, Jiwchan T, Srikongsritong K, Park G (2018) Comparative assessment for the effects of reactive species on seed germination, growth and metabolisms of vegetables. Scient Hort 227:85–91

    Article  CAS  Google Scholar 

  • Shekhawat GS, Verma K (2010) Haem oxygenase (HO): an overlooked enzyme of plant metabolism and defence. J Exp Bot 61:2255–2270

    Article  CAS  Google Scholar 

  • Signorelli S, Considine MJ (2018) Nitric oxide enables germination by a four-pronged attack on ABA-induced seed dormancy. Front Plant Sci 9:296

    Article  Google Scholar 

  • Skubacz A, Daszkowska-Golec A, Szarejko I (2016) The role and regulation of ABI5 (ABA-Insensitive 5) in plant development, abiotic stress responses and phytohormone crosstalk. Front Plant Sci 7:1884

    Article  Google Scholar 

  • Su L, Lan Q, Pritchard HW, Xue H, Wang X (2016) Reactive oxygen species induced by cold stratification promote germination of Hedysarum scoparium seeds. Plant Physiol Biochem 109:406–415

    Article  CAS  Google Scholar 

  • Yang L, Zhang D, Liu H, Wei C, Wang J, Shen H (2018) Effects of nitric oxide donor and nitric oxide scavengers on Sorbus pohuashanensis. J For Res 29:631–638

    Article  CAS  Google Scholar 

  • Zhang Y, Deng B, Li Z (2018) Inhibition of NADPH oxidase increases defense enzyme activities and improves maize seed germination under Pb stress. Ecotoxicol Environ Saf 158:187–192

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. M. Leung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Leung, D.W.M. (2019). Participation of Hydrogen Peroxide and Nitric Oxide in Improvement of Seed Germination Performance Under Unfavourable Conditions. In: Gupta, D., Palma, J., Corpas, F. (eds) Nitric Oxide and Hydrogen Peroxide Signaling in Higher Plants. Springer, Cham. https://doi.org/10.1007/978-3-030-11129-8_7

Download citation

Publish with us

Policies and ethics