Skip to main content

Transcriptional Regulation of Gene Expression Related to Hydrogen Peroxide (H2O2) and Nitric Oxide (NO)

  • Chapter
  • First Online:
Nitric Oxide and Hydrogen Peroxide Signaling in Higher Plants

Abstract

Hydrogen peroxide (H2O2) and nitric oxide (NO) are biological messengers that control a plethora of physiological functions integral to plant biology such as seed germination, growth, development, flowering, or plant response to stress. Furthermore, the interplay between the signaling pathways governed by these redox molecules has emerged as crucial during plant response to different stress situations. In recent years, to gain in the knowledge of the mode of action of these signaling molecules at molecular levels, different NO donors and H2O2 have been used in medium- and large-scale transcriptomic analyses including microarray, cDNA-amplification fragment length polymorphism (AFLP), and high-throughput sequencing (RNA-seq technology). Following this strategy, a high transcriptional reprogramming induced by both NO and H2O2 has been proposed. In this regard, thousands of NO- and H2O2-cell targets have been identified in different plant species and organs and predicted to be related to a wide diversity of biological processes. However, some authors have identified by comparing different transcriptomic analysis that there is a low overlap in the transcriptomic data available under different treatment conditions as well as different organ analyzed. In this sense, more transcriptomic data comparisons will help in the identification of the NO- and H2O2-specific targets and even the common genes involved in both H2O2- and NO-dependent signaling events.

In this book chapter, we will offer an update about the recent knowledge concerning the transcriptional regulation induced by NO and H2O2. With this purpose, the recent data from the different medium- and large-scale transcriptomic analyses have been discussed. In addition, it is also provided an overview about the interplay between H2O2- and NO-dependent signaling mechanism and the need to further identification of common targets during the coordinated response to different stress situations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahlfors R, Brosché M, Kollist H, Kangasjarvi J (2009) Nitric oxide modulates ozone-induced cell death, hormone biosynthesis and gene expression in Arabidopsis thaliana. Plant J 58:1–12

    Article  CAS  Google Scholar 

  • Albertos P, Romero-Puertas MC, Tatematsu K, Mateos I, Sánchez-Vicente I, Nambara E, Lorenzo O (2015) S-nitrosylation triggers ABI5 degradation to promote seed germination and seedling growth. Nat Commun 6:8669

    Article  CAS  Google Scholar 

  • Andrio E, Marino D, Marmeys A, de Segonzac MD, Damiani I, Genre A, Huguet S, Frendo P, Puppo A, Pauly N (2013) Hydrogen peroxide-regulated genes in the Medicago truncatula-Sinorhizobium meliloti symbiosis. New Phytol 198:179–189

    Article  CAS  Google Scholar 

  • Astier J, Lindermayr C (2012) Nitric oxide-dependent posttranslational modification in plants: an update. Int J Mol Sci 13:15193–15208

    Article  CAS  Google Scholar 

  • Badri DV, Loyola-Vargas VM, Du J, Stermitz FR, Broeckling CD, Iglesias-Andreu L, Vivanco JM (2008) Transcriptome analysis of Arabidopsis roots treated with signaling compounds: a focus on signal transduction, metabolic regulation and secretion. New Phytol 179:209–223

    Article  CAS  Google Scholar 

  • Begara-Morales JC, Loake GJ (2016) Protein denitrosylation in plant biology. In: Lamattina L, García-Mata C (eds) Gasotransmitters in plants, signaling and communication in plants. Springer, Cham, pp 201–215

    Chapter  Google Scholar 

  • Begara-Morales JC, Sánchez-Calvo B, Chaki M, Valderrama R, Mata-Pérez C, López-Jaramillo J, Padilla MN, Carreras A, Corpas FJ, Barroso JB (2014a) Dual regulation of cytosolic ascorbate peroxidase (APX) by tyrosine nitration and S-nitrosylation. J Exp Bot 65:527–538

    Article  CAS  Google Scholar 

  • Begara-Morales JC, Sánchez-Calvo B, Luque F, Leyva-Pérez MO, Leterrier M, Corpas FJ, Barroso JB (2014b) Differential transcriptomic analysis by RNA-seq of GSNO-responsive genes between Arabidopsis roots and leaves. Plant Cell Physiol 55:1080–1095

    Article  CAS  Google Scholar 

  • Begara-Morales JC, Sánchez-Calvo B, Chaki M, Valderrama R, Mata-Pérez C, Padilla MN, Corpas FJ, Barroso JB (2016) Antioxidant systems are regulated by nitric oxide-mediated post-translational modifications (NO-PTMs). Front Plant Sci 7:152

    Article  Google Scholar 

  • Begara-Morales JC, Chaki M, Valderrama R, Sanchez-Calvo B, Mata-Perez C, Padilla MN, Corpas FJ, Barroso JB (2018) Nitric oxide buffering and conditional nitric oxide release in stress response. J Exp Bot 69:3425–3438

    Article  Google Scholar 

  • Besson-Bard A, Gravot A, Richaud P, Auroy P, Duc C, Gaymard F, Taconnat L, Renou JP, Pugin A, Wendehenne D (2009a) Nitric oxide contributes to cadmium toxicity in Arabidopsis by promoting cadmium accumulation in roots and by up-regulating genes related to iron uptake. Plant Physiol 149:1302–1315

    Article  CAS  Google Scholar 

  • Besson-Bard AL, Astier JR, Rasul S, Wawer I, Dubreuil-Maurizi C, Jeandroz S, Wendehenne D (2009b) Current view of nitric oxide-responsive genes in plants. Plant Sci 177:302–309

    Article  CAS  Google Scholar 

  • Blaby IK, Blaby-Haas CE, Pérez-Pérez ME, Schmollinger S, Fitz-Gibbon S, Lemaire SD, Merchant SS (2015) Genome-wide analysis on Chlamydomonas reinhardtii reveals the impact of hydrogen peroxide on protein stress responses and overlap with other stress transcriptomes. Plant J 84:974–988

    Article  CAS  Google Scholar 

  • Boscari A, del Giudice J, Ferrarini A, Venturini L, Zaffini A-L, Delledonne M, Puppo A (2013) Expression dynamics of the Medicago truncatula transcriptome during the symbiotic interaction with Sinorhizobium meliloti: which role for nitric oxide? Plant Physiol 161:425–439

    Article  CAS  Google Scholar 

  • Camejo D, Ortiz-Espín A, Lázaro JJ, Romero-Puertas MC, Lázaro-Payo A, Sevilla F, Jiménez A (2015) Functional and structural changes in plant mitochondrial PrxII F caused by NO. J Proteome 119:112–125

    Article  CAS  Google Scholar 

  • Cerny M, Habánová H, Berka M, Luklová M, Brzobohatý B (2018) Hydrogen peroxide: its role in plant biology and crosstalk with signalling networks. Int J Mol Sci 19:2812

    Article  Google Scholar 

  • Corpas FJ, Barroso JB (2013) Nitro-oxidative stress vs oxidative or nitrosative stress in higher plants. New Phytol 199:633–635

    Article  CAS  Google Scholar 

  • Corpas FJ, Leterrier M, Valderrama R, Airaki M, Chaki M, Palma JM, Barroso JB (2011) Nitric oxide imbalance provokes a nitrosative response in plants under abiotic stress. Plant Sci 181:604–611

    Article  CAS  Google Scholar 

  • Corpas FJ, Alché JD, Barroso JB (2013) Current overview of S-nitrosoglutathione (GSNO) in higher plants. Front Plant Sci 4:126

    PubMed  PubMed Central  Google Scholar 

  • Damiani I, Pauly N, Puppo A, Brouquisse R, Boscari A (2016) Reactive oxygen species and nitric oxide control early steps of the legume-Rhizobium symbiotic interaction. Front Plant Sci 7:454

    PubMed  PubMed Central  Google Scholar 

  • De Michele R, Formentin E, Todesco M, Toppo S, Carimi F, Zottini M, Barizza E, Ferrarini A, Delledonne M, Fontana P (2009) Transcriptome analysis of Medicago truncatula leaf senescence: similarities and differences in metabolic and transcriptional regulations as compared with Arabidopsis, nodule senescence and nitric oxide signalling. New Phytol 181:563–575

    Article  Google Scholar 

  • Delledonne M, Xia Y, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394:585–588

    Article  CAS  Google Scholar 

  • Delledonne M, Zeier J, Marocco A, Lamb C (2001) Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc Natl Acad Sci USA 98:13454–13459

    Article  CAS  Google Scholar 

  • Durner J, Wendehenne D, Klessig DF (1998) Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc Natl Acad Sci USA 95:10328–10333

    Article  CAS  Google Scholar 

  • Fancy NN, Bahlmann AK, Loake GJ (2016) Nitric oxide function in plant abiotic stress. Plant Cell Environ 40:462–472

    Article  Google Scholar 

  • Feechan A, Kwon E, Yun BW, Wang Y, Pallas JA, Loake GJ (2005) A central role for S-nitrosothiols in plant disease resistance. Proc Natl Acad Sci USA 102:8054–8059

    Article  CAS  Google Scholar 

  • Ferrarini A, De Stefano M, Baudouin E, Pucciariello C, Polverari A, Puppo A, Delledonne M (2008) Expression of Medicago truncatula genes responsive to nitric oxide in pathogenic and symbiotic conditions. Mol Plant-Microbe Interact 21:781–790

    Article  CAS  Google Scholar 

  • Flatley J, Barrett J, Pullan ST, Hughes MN, Green J, Poole RK (2005) Transcriptional responses of Escherichia coli to S-nitrosoglutathione under defined chemostat conditions reveal major changes in methionine biosynthesis. J Biol Chem 280:10065–10072

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2016) Stress-triggered redox signalling: what’s in pROSpect? Plant Cell Environ 39:951–964

    Article  CAS  Google Scholar 

  • Gambino G, Boccacci P, Margaria P, Palmano S, Gribaudo I (2013) Hydrogen peroxide accumulation and transcriptional changes in grapevines recovered from flavescence doree disease. Phytopathology 103:776–784

    Article  CAS  Google Scholar 

  • Gross F, Durner J, Gaupels F (2013) Nitric oxide, antioxidants and prooxidants in plant defence responses. Front Plant Sci 4:419

    Article  Google Scholar 

  • He H, He L, Gu M (2014) The diversity of nitric oxide function in plant responses to metal stress. Biometals 27:219–228

    Article  CAS  Google Scholar 

  • Herrera-Vásquez A, Salinas P, Holuigue L (2015) Salicylic acid and reactive oxygen species interplay in the transcriptional control of defense genes expression. Front Plant Sci 6:171

    Article  Google Scholar 

  • Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS (2005) Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6:150–166

    Article  CAS  Google Scholar 

  • Hu J, Huang X, Chen L, Sun X, Lu C, Zhang L, Wang Y, Zuo J (2015) Site-specific nitrosoproteomic identification of endogenously S-nitrosylated proteins in Arabidopsis. Plant Physiol 167:1731–1746

    Article  CAS  Google Scholar 

  • Huang X, von Rad U, Durner J (2002) Nitric oxide induces transcriptional activation of the nitric oxide-tolerant alternative oxidase in Arabidopsis suspension cells. Planta 215:914–923

    Article  CAS  Google Scholar 

  • Huang J, Wei H, Li L, Yu S (2018) Transcriptome analysis of nitric oxide-responsive genes in upland cotton (Gossypium hirsutum). PLoS One 13:e0192367

    Article  Google Scholar 

  • Hussain A, Mun BG, Imran QM, Lee SU, Adamu TA, Shahid M, Kim KM, Yun BW (2016) Nitric oxide mediated transcriptome profiling reveals activation of multiple regulatory pathways in Arabidopsis thaliana. Front Plant Sci 7:975

    PubMed  PubMed Central  Google Scholar 

  • Imran QM, Hussain A, Lee SU, Mun BG, Falak N, Loake GJ, Yun BW (2018) Transcriptome profile of NO-induced Arabidopsis transcription factor genes suggests their putative regulatory role in multiple biological processes. Sci Rep 8:771

    Article  Google Scholar 

  • Kansanen E, Jyrkkanen H-K, Volger OL, Leinonen H, Kivela AM, Hakkinen S-K, Woodcock SR, Schopfer FJ, Horrevoets AJ, Yla-Herttala S (2009) Nrf2-dependent and-independent responses to nitro-fatty acids in human endothelial cells: identification of heat shock response as the major pathway activated by nitro-oleic acid. J Biol Chem 284:33233–33241

    Article  CAS  Google Scholar 

  • Kovacs I, Holzmeister C, Wirtz M, Geerlof A, Fröhlich T, Römling G, Kuruthukulangarakoola GT, Linster E, Hell R, Arnold GJ, Durner J, Lindermayr C (2016) ROS-Mediated inhibition of S-nitrosoglutathione reductase contributes to the activation of anti-oxidative mechanisms. Front Plant Sci 7:1669

    Article  Google Scholar 

  • Kumar RS, Shen CH, Wu PY, Kumar SS, Hua MS, Yeh KW (2016) Nitric oxide participates in plant flowering repression by ascorbate. Sci Rep 6:35246

    Article  Google Scholar 

  • Li SW, Leng Y, Shi RF (2017) Transcriptomic profiling provides molecular insights into hydrogen peroxide-induced adventitious rooting in mung bean seedlings. BMC Genomics 18:188

    Article  CAS  Google Scholar 

  • Lindermayr C (2018) Crosstalk between reactive oxygen species and nitric oxide in plants: key role of S-nitrosoglutathione reductase. Free Radic Biol Med 122:110–115

    Article  CAS  Google Scholar 

  • Lindermayr C, Durner J (2015) Interplay of reactive oxygen species and nitric oxide: nitric oxide coordinates reactive oxygen species homeostasis. Plant Physiol 167:1209–1210

    Article  CAS  Google Scholar 

  • Liu L, Hausladen A, Zeng M, Que L, Heitman J, Stamler JS (2001) A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans. Nature 410:490–494

    Article  CAS  Google Scholar 

  • Marinho HS, Real C, Cyrne L, Soares H, Antunes F (2014) Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol 2:535–562

    Article  CAS  Google Scholar 

  • Mata-Pérez C, Sánchez-Calvo B, Begara-Morales JC, Carreras A, Padilla MN, Melguizo M, Valderrama R, Corpas FJ, Barroso JB (2016a) Nitro-linolenic acid is a nitric oxide donor. Nitric Oxide 57:57–63

    Article  Google Scholar 

  • Mata-Pérez C, Sánchez-Calvo B, de las Padilla-Serrano MN, Begara-Morales JC, Luque F, Melguizo M, Jiménez-Ruiz J, Fierro-Risco J, Peñas-Sanjuan A, Valderrama R (2016b) Nitro-fatty acides in plant signaling: nitro-linolenic acid induces the molecular chaperone network in Arabidopsis. Plant Physiol 170:686–701

    Article  Google Scholar 

  • Miller GAD, Mittler RON (2006) Could heat shock transcription factors function as hydrogen peroxide sensors in plants? Ann Bot 98:279–288

    Article  CAS  Google Scholar 

  • Monzón GC, Pinedo M, Di Rienzo J, Novo-Uzal E, Pomar F, Lamattina L, de la Canal L (2014) Nitric oxide is required for determining root architecture and lignin composition in sunflower. Supporting evidence from microarray analyses. Nitric Oxide 39:20–28

    Article  Google Scholar 

  • Mur LAJ, Mandon J, Persijn S, Cristescu SM, Moshkov IE, Novikova GV, Hall MA, Harren FJM, Hebelstrup KH, Gupta KJ (2013) Nitric oxide in plants: an assessment of the current state of knowledge. AoB Plant 5:pls052

    Article  Google Scholar 

  • Niu L, Liao W (2016) Hydrogen peroxide signaling in plant development and abiotic responses: crosstalk with nitric oxide and calcium. Front Plant Sci 7:230

    PubMed  PubMed Central  Google Scholar 

  • Orozco-Cárdenas ML, Narváez-Vásquez J, Ryan CA (2001) Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell 13:179–191

    Article  Google Scholar 

  • Ortega-Galisteo AP, Rodriguez-Serrano M, Pazmiño DM, Gupta DK, Sandalio LM, Romero-Puertas MC (2012) S-Nitrosylated proteins in pea (Pisum sativum L.) leaf peroxisomes: changes under abiotic stress. J Exp Bot 63:2089–2103

    Article  CAS  Google Scholar 

  • Palmieri MC, Sell S, Huang X, Scherf M, Werner T, Durner JR, Lindermayr C (2008) Nitric oxide-responsive genes and promoters in Arabidopsis thaliana: a bioinformatics approach. J Exp Bot 59:177–186

    Article  CAS  Google Scholar 

  • Parani M, Rudrabhatla S, Myers R, Weirich H, Smith B, Leaman DW, Goldman SL (2004) Microarray analysis of nitric oxide responsive transcripts in Arabidopsis. Plant Biotechnol J 2:359–366

    Article  CAS  Google Scholar 

  • Polverari A, Molesini B, Pezzotti M, Buonaurio R, Marte M, Delledonne M (2003) Nitric oxide-mediated transcriptional changes in Arabidopsis thaliana. Mol Plant-Microbe Interact 16:1094–1105

    Article  CAS  Google Scholar 

  • Procházková D, Sumaira J, Wilhelmová NA, Pavlíková D, Száková J (2014) Reactive nitrogen species and the role of NO in abiotic stress. In: Ahmad P (ed) Emerging technologies and managment of crops stress tolerance. Elsevier, London

    Google Scholar 

  • Puppo A, Pauly N, Boscari A, Mandon K, Brouquisse R (2013) Hydrogen peroxide and nitric oxide: key regulators of the legume-rhizobium and mycorrhizal symbioses. Antioxid Redox Signal 18:2202–2219

    Article  CAS  Google Scholar 

  • Quirino BF, Normanly J, Amasino RM (1999) Diverse range of gene activity during Arabidopsis thaliana leaf senescence includes pathogen-independent induction of defense-related genes. Plant Mol Biol 40:267–278

    Article  CAS  Google Scholar 

  • Radi R (2004) Nitric oxide, oxidants, and protein tyrosine nitration. Proc Natl Acad Sci USA 101:4003–4008

    Article  CAS  Google Scholar 

  • Romero-Puertas MC, Laxa M, Matté A, Zaninotto F, Finkemeier I, Jones AME, Perazzolli M, Vandelle E, Dietz KJ, Delledonne M (2007) S-nitrosylation of peroxiredoxin II E promotes peroxynitrite-mediated tyrosine nitration. Plant Cell 19:4120–4130

    Article  CAS  Google Scholar 

  • Sewelam N, Jaspert N, Van Der Kelen K, Tognetti VB, Schmitz J, Frerigmann H, Stahl E, Zeier J, Van Breusegem F, Maurino VG (2016) Spatial H2O2 signaling specificity: H2O2 from chloroplasts and peroxisomes modulates the plant transcriptome differentially. Mol Plant 7:1191–1210

    Article  Google Scholar 

  • Singh PK, Indoliya Y, Chauhan AS, Singh SP, Singh AP, Dwivedi S, Tripathi RD, Chakrabarty D (2017) Nitric oxide mediated transcriptional modulation enhances plant adaptive responses to arsenic stress. Sci Rep 7:3592

    Article  Google Scholar 

  • Su T, Wang P, Li H, Zhao Y, Lu Y, Dai P, Ren T, Wang X, Li X, Shao Q (2018) The Arabidopsis catalase triple mutant reveals important roles of catalases and peroxisome derived signaling in plant development. J Integr Plant Biol 60:591–607

    Article  CAS  Google Scholar 

  • Tanou G, Job C, Rajjou L, Arc E, Belghazi M, Diamantidis G, Molassiotis A, Job D (2009) Proteomics reveals the overlapping roles of hydrogen peroxide and nitric oxide in the acclimation of citrus plants to salinity. Plant J 60:795–804

    Article  CAS  Google Scholar 

  • Vandenabeele S, Van Der Kelen K, Dat J, Gadjev I, Boonefaes T, Morsa S, Rottiers P, Slooten L, Van Montagu M, Zabeau M (2003) A comprehensive analysis of hydrogen peroxide-induced gene expression in tobacco. Proc Natl Acad Sci USA 100:16113–16118

    Article  CAS  Google Scholar 

  • Vandenabeele S, Vanderauwera S, Vuylsteke M, Rombauts S, Langebartels C, Seidlitz HK, Zabeau M, Van Montagu M, Inzé D, Van Breusegem F (2004) Catalase deficiency drastically affects gene expression induced by high light in Arabidopsis thaliana. Plant J 39:45–58

    Article  CAS  Google Scholar 

  • Vanderauwera S, Zimmermann P, Rombauts S, Vandenabeele S, Langebartels C, Gruissem W, Inzé D, Van Breusegem F (2005) Genome-wide analysis of hydrogen peroxide-regulated gene expression in Arabidopsis reveals a high light-induced transcriptional cluster involved in anthocyanin biosynthesis. Plant Physiol 139:806–821

    Article  CAS  Google Scholar 

  • Wang P, Du Y, Hou YJ, Zhao Y, Hsu CC, Yuan F, Zhu X, Tao WA, Song CP, Zhu JK (2015) Nitric oxide negatively regulates abscisic acid signaling in guard cells by S-nitrosylation of OST1. Proc Natl Acad Sci USA 112:613–618

    Article  CAS  Google Scholar 

  • Wilhelm BT, Landry JR (2009) RNA-Seq-quantitative measurement of expression through massively parallel RNA-sequencing. Methods 48:249–257

    Article  CAS  Google Scholar 

  • Xiao J, Jin X, Jia X, Wang H, Cao A, Zhao W, Pei H, Xue Z, He L, Chen Q (2013) Transcriptome-based discovery of pathways and genes related to resistance against Fusarium head blight in wheat landrace Wangshuibai. BMC Genomics 14:197

    Article  CAS  Google Scholar 

  • Yang H, Mu J, Chen L, Feng J, Hu J, Li L, Zhou JM, Zuo J (2015) S-nitrosylation positively regulates ascorbate peroxidase activity during plant stress responses. Plant Physiol 167:1604–1615

    Article  CAS  Google Scholar 

  • Yu M, Lamattina L, Spoel SH, Loake GJ (2014) Nitric oxide function in plant biology: a redox cue in deconvolution. New Phytol 202:1142–1156

    Article  CAS  Google Scholar 

  • Yun BW, Feechan A, Yin M, Saidi NBB, Le Bihan T, Yu M, Moore JW, Kang JG, Kwon E, Spoel SH (2011) S-nitrosylation of NADPH oxidase regulates cell death in plant immunity. Nature 478:264–268

    Article  CAS  Google Scholar 

  • Zeidler D, Zähringer U, Gerber I, Dubery I, Hartung T, Bors W, Hutzler P, Durner J (2004) Innate immunity in Arabidopsis thaliana: lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes. Proc Natl Acad Sci USA 101:15811–15816

    Article  CAS  Google Scholar 

  • Zeng F, Sun F, Li L, Liu K, Zhan Y (2014) Genome-scale transcriptome analysis in response to nitric oxide in birch cells: implications of the triterpene biosynthetic pathway. PLoS One 9:e116157

    Article  Google Scholar 

Download references

Acknowledgments

JCBM wishes to thank the Ministry of Economy and Competitiveness (Spain) for postdoctoral research funding within the Juan de la Cierva-Incorporación program. The work in our lab is supported by the ERDF grants co-financed by the Ministry of Economy and Competitiveness (projects BIO2015-66390-P) and the Junta de Andalucía (group BIO286) in Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan B. Barroso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Begara-Morales, J.C., Chaki, M., Valderrama, R., Mata-Pérez, C., Padilla, M., Barroso, J.B. (2019). Transcriptional Regulation of Gene Expression Related to Hydrogen Peroxide (H2O2) and Nitric Oxide (NO). In: Gupta, D., Palma, J., Corpas, F. (eds) Nitric Oxide and Hydrogen Peroxide Signaling in Higher Plants. Springer, Cham. https://doi.org/10.1007/978-3-030-11129-8_4

Download citation

Publish with us

Policies and ethics