Skip to main content

Network Decontamination

  • Chapter
  • First Online:
Distributed Computing by Mobile Entities

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11340))

Abstract

The Network Decontamination problem consists of coordinating a team of mobile agents in order to clean a contaminated network. The problem is actually equivalent to tracking and capturing an invisible and arbitrarily fast fugitive. This problem has natural applications in network security in computer science or in robotics for search or pursuit-evasion missions. Many different objectives have been studied: the main one being the minimization of the number of mobile agents necessary to clean a contaminated network.

Many environments (continuous or discrete) have also been considered. In this Chapter, we focus on networks modeled by graphs. In this context, the optimization problem that consists of minimizing the number of agents has a deep graph-theoretical interpretation. Network decontamination and, more precisely, graph searching models, provide nice algorithmic interpretations of fundamental concepts in the Graph Minors theory by Robertson and Seymour.

For all these reasons, graph searching variants have been widely studied since their introduction by Breish (1967) and mathematical formalizations by Parsons (1978) and Petrov (1982). This chapter consists of an overview of the algorithmic results on graph decontamination and graph searching.

This work has been partially supported by ANR program “Investments for the Future” under reference ANR-11-LABX-0031-01, the Inria Associated Team AlDyNet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We should emphasize that there is another different topic of graph theory, related to Depth/Breadth First Search, called Graph Searching, a.k.a. Graph Traversals (e.g. [CDH+16]).

  2. 2.

    Unless stated otherwise, all graphs considered in this chapter are simple, undirected, and connected.

  3. 3.

    Given a graph \(G=(V,E)\) and \(v \in V\), N(v) denotes the set of neighbors of v, i.e., \(N(v)=\{u \in V \mid uv \in E\}\).

  4. 4.

    A minor of a graph G is any subgraph of any graph obtained from G by contracting some edges.

  5. 5.

    Due to the huge number of works on treewidth, we have decided not to detail them (nor the definition of treewidth) and refer the reader to [Bod98, Die12, CFK+15].

References

  1. Ames, B.P.W., et al.: A leapfrog strategy for pursuit-evasion in a polygonal environment. Int. J. Comput. Geom. Appl. 25(2), 77–100 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Amini, O., Coudert, D., Nisse, N.: Non-deterministic graph searching in trees. Theor. Comput. Sci. 580, 101–121 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alspach, B., Dyer, D., Hanson, D., Yang, B.: Arc searching digraphs without jumping. In: Dress, A., Xu, Y., Zhu, B. (eds.) COCOA 2007. LNCS, vol. 4616, pp. 354–365. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73556-4_37

    Chapter  Google Scholar 

  4. Adler, I.: Directed tree-width examples. J. Comb. Theory Ser. B 97(5), 718–725 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Amiri, S.A., Kreutzer, S., Rabinovich, R.: Dag-width is PSPACE-complete. Theor. Comput. Sci. 655, 78–89 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Alspach, B.: Searching and sweeping graphs: a brief survey. Mathematiche 59, 5–37 (2004)

    MathSciNet  MATH  Google Scholar 

  7. Barát, J.: Directed path-width and monotonicity in digraph searching. Graphs Comb. 22(2), 161–172 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Berthomé, P., Bouvier, T., Mazoit, F., Nisse, N., Soares, R.P.: An unified FPT algorithm for width of partition functions. Research Report RR-8372, INRIA, September 2013

    Google Scholar 

  9. Blin, L., Burman, J., Nisse, N.: Brief announcement: distributed exclusive and perpetual tree searching. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 403–404. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33651-5_29

    Chapter  Google Scholar 

  10. Blin, L., Burman, J., Nisse, N.: Exclusive graph searching. Algorithmica 77(3), 942–969 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Berwanger, D., Dawar, A., Hunter, P., Kreutzer, S., Obdrzálek, J.: The DAG-width of directed graphs. J. Comb. Theory Ser. B 102(4), 900–923 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Borowiecki, P., Dereniowski, D., Kuszner, L.: Distributed graph searching with a sense of direction. Distrib. Comput. 28(3), 155–170 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bodlaender, H.L., Fomin, F.V.: Approximation of pathwidth of outerplanar graphs. J. Algorithms 43(2), 190–200 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Barrière, L., et al.: Connected graph searching. Inf. Comput. 219, 1–16 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Barrière, L., Flocchini, P., Fraigniaud, P., Santoro, N.: Capture of an intruder by mobile agents. In: Proceedings of the 14th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA), pp. 200–209 (2002)

    Google Scholar 

  16. Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S., Thilikos, D.M.: (Meta) kernelization. In: 50th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 629–638. IEEE Computer Society (2009)

    Google Scholar 

  17. Blin, L., Fraigniaud, P., Nisse, N., Vial, S.: Distributed chasing of network intruders. Theor. Comput. Sci. 399(1–2), 12–37 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Barrière, L., Fraigniaud, P., Santoro, N., Thilikos, D.M.: Searching is not jumping. In: Bodlaender, H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 34–45. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39890-5_4

    Chapter  Google Scholar 

  19. Best, M.J., Gupta, A., Thilikos, D.M., Zoros, D.: Contraction obstructions for connected graph searching. Discrete Appl. Math. 209, 27–47 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Brandenburg, F.J., Herrmann, S.: Graph searching and search time. In: Wiedermann, J., Tel, G., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2006. LNCS, vol. 3831, pp. 197–206. Springer, Heidelberg (2006). https://doi.org/10.1007/11611257_17

    Chapter  Google Scholar 

  21. Bienstock, D.: Graph searching, path-width, tree-width and related problems (a survey). In: Proceedings of Reliability Of Computer And Communication Networks, a DIMACS Workshop. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 5, pp. 33–50. DIMACS/AMS (1991)

    Google Scholar 

  22. Bodlaender, H.L., Kloks, T.: Efficient and constructive algorithms for the pathwidth and treewidth of graphs. J. Algorithms 21(2), 358–402 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Bhadauria, D., Klein, K., Isler, V., Suri, S.: Capturing an evader in polygonal environments with obstacles: the full visibility case. Int. J. Robot. Res. 31(10), 1176–1189 (2012)

    Article  Google Scholar 

  24. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. Society for Industrial and Applied Mathematics, Philadelphia (1999)

    Book  MATH  Google Scholar 

  25. Bodlaender, H.L., Möhring, R.H.: The pathwidth and treewidth of cographs. SIAM J. Discrete Math. 6(2), 181–188 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  26. Blair, J., Manne, F., Mihai, R.: Efficient self-stabilizing graph searching in tree networks. In: Dolev, S., Cobb, J., Fischer, M., Yung, M. (eds.) SSS 2010. LNCS, vol. 6366, pp. 111–125. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16023-3_11

    Chapter  Google Scholar 

  27. Bonato, A., Nowakovski, R.J.: The Game of Cops and Robber on Graphs. American Mathematical Society, Providence (2011)

    Book  Google Scholar 

  28. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theor. Comput. Sci. 209(1–2), 1–45 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  29. Breisch, R.L.: An intuitive approach to speleotopology. Southwest. Cavers 6, 72–78 (1967)

    Google Scholar 

  30. Breish, R.L.: Lost in a Cave: Applying Graph Theory to Cave Exploration. Greyhound Press, Dallas (2012)

    Google Scholar 

  31. Bienstock, D., Robertson, N., Seymour, P.D., Thomas, R.: Quickly excluding a forest. J. Comb. Theory Ser. B 52(2), 274–283 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  32. Bienstock, D., Seymour, P.D.: Monotonicity in graph searching. J. Algorithms 12(2), 239–245 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  33. Bodlaender, H.L., Thilikos, D.M.: Computing small search numbers in linear time. In: Downey, R., Fellows, M., Dehne, F. (eds.) IWPEC 2004. LNCS, vol. 3162, pp. 37–48. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28639-4_4

    Chapter  Google Scholar 

  34. Borie, R.B., Tovey, C.A., Koenig, S.: Algorithms and complexity results for graph-based pursuit evasion. Auton. Robots 31(4), 317–332 (2011)

    Article  Google Scholar 

  35. Cohen, N., Coudert, D., Mazauric, D., Nepomuceno, N., Nisse, N.: Tradeoffs in process strategy games with application in the WDM reconfiguration problem. Theor. Comput. Sci. 412(35), 4675–4687 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Corneil, D.G., Dusart, J., Habib, M., Mamcarz, A., de Montgolfier, F.: A tie-break model for graph search. Discrete Appl. Math. 199, 89–100 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015)

    Book  MATH  Google Scholar 

  38. Chung, T.H., Hollinger, G.A., Isler, V.: Search and pursuit-evasion in mobile robotics - a survey. Auton. Robots 31(4), 299–316 (2011)

    Article  Google Scholar 

  39. Coudert, D., Huc, F., Mazauric, D., Nisse, N., Sereni, J.-S.: Reconfiguration of the routing in WDM networks with two classes of services. In: Conference on Optical Network Design and Modeling (ONDM), Braunschweig, Germany (2009)

    Google Scholar 

  40. Coudert, D., Huc, F., Mazauric, D.: A distributed algorithm for computing the node search number in trees. Algorithmica 63(1–2), 158–190 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Coudert, D., Huc, F., Sereni, J.-S.: Pathwidth of outerplanar graphs. J. Graph Theory 55(1), 27–41 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  42. Chandran, L.S., Kavitha, T.: The treewidth and pathwidth of hypercubes. Discrete Math. 306(3), 359–365 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  43. Courcelle, B., Mosbah, M.: Monadic second-order evaluations on tree-decomposable graphs. Theor. Comput. Sci. 109(1&2), 49–82 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  44. Coudert, D., Mazauric, D., Nisse, N.: Experimental evaluation of a branch-and-bound algorithm for computing pathwidth and directed pathwidth. ACM J. Exp. Algorithmics 21(1), 1.3:1–1.3:23 (2016)

    MathSciNet  MATH  Google Scholar 

  45. Coudert, D.: A note on integer linear programming formulations for linear ordering problems on graphs. Research report, Inria, I3S, Universite Nice Sophia Antipolis, CNRS, February 2016

    Google Scholar 

  46. Coudert, D., Sereni, J.-S.: Characterization of graphs and digraphs with small process numbers. Discrete Appl. Math. 159(11), 1094–1109 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  47. Dereniowski, D., Dyer, D.: On minimum cost edge searching. Theor. Comput. Sci. 495, 37–49 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  48. Dereniowski, D., Diner, Ö.Y., Dyer, D.: Three-fast-searchable graphs. Discrete Appl. Math. 161(13–14), 1950–1958 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  49. Dereniowski, D.: Maximum vertex occupation time and inert fugitive: recontamination does help. Inf. Process. Lett. 109(9), 422–426 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  50. Dereniowski, D.: Connected searching of weighted trees. Theor. Comput. Sci. 412(41), 5700–5713 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  51. Dereniowski, D.: Approximate search strategies for weighted trees. Theor. Comput. Sci. 463, 96–113 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  52. Dereniowski, D.: From pathwidth to connected pathwidth. SIAM J. Discrete Math. 26(4), 1709–1732 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  53. Daadaa, Y., Flocchini, P., Zaguia, N.: Network decontamination with temporal immunity by cellular automata. In: Bandini, S., Manzoni, S., Umeo, H., Vizzari, G. (eds.) ACRI 2010. LNCS, vol. 6350, pp. 287–299. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15979-4_31

    Chapter  MATH  Google Scholar 

  54. Demaine, E.D., Hajiaghayi, M.T.: The bidimensionality theory and its algorithmic applications. Comput. J. 51(3), 292–302 (2008)

    Article  Google Scholar 

  55. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 4th edn. Springer, Heidelberg (2012)

    MATH  Google Scholar 

  56. Daadaa, Y., Jamshed, A., Shabbir, M.: Network decontamination with a single agent. Graphs Comb. 32(2), 559–581 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  57. Deo, N., Krishnamoorthy, M.S., Langston, M.A.: Exact and approximate solutions for the gate matrix layout problem. IEEE Trans. CAD Integr. Circuits Syst. 6(1), 79–84 (1987)

    Article  Google Scholar 

  58. Dendris, N.D., Kirousis, L.M., Thilikos, D.M.: Fugitive-search games on graphs and related parameters. Theor. Comput. Sci. 172(1–2), 233–254 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  59. Dereniowski, D., Kubiak, W., Zwols, Y.: The complexity of minimum-length path decompositions. J. Comput. Syst. Sci. 81(8), 1715–1747 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  60. D’Angelo, G., Navarra, A., Nisse, N.: A unified approach for gathering and exclusive searching on rings under weak assumptions. Distrib. Comput. 30(1), 17–48 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  61. Dereniowski, D., Osula, D., Rzazewski, P.: Finding small-width connected path decompositions in polynomial time. CoRR, abs/1802.05501 (2018)

    Google Scholar 

  62. D’Angelo, G., Di Stefano, G., Navarra, A., Nisse, N., Suchan, K.: Computing on rings by oblivious robots: a unified approach for different tasks. Algorithmica 72(4), 1055–1096 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  63. Dereniowski, D., Urbanska, D.: Distributed searching of partial grids. CoRR, abs/1610.01458 (2016)

    Google Scholar 

  64. Dyer, D., Yang, B., Yaşar, Ö.: On the fast searching problem. In: Fleischer, R., Xu, J. (eds.) AAIM 2008. LNCS, vol. 5034, pp. 143–154. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68880-8_15

    Chapter  Google Scholar 

  65. Evans, W., Hunter, P., Safari, M.A.: D-width and cops and robbers. Research report (2013, unpublished)

    Google Scholar 

  66. Ellis, J.A., Markov, M.: Computing the vertex separation of unicyclic graphs. Inf. Comput. 192(2), 123–161 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  67. Ellis, J.A., Sudborough, I.H., Turner, J.S.: Graph separation and search number. Technical report, Report Number: WUCS-87-11 (1987)

    Google Scholar 

  68. Ellis, J.A., Sudborough, I.H., Turner, J.S.: The vertex separation and search number of a graph. Inf. Comput. 113(1), 50–79 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  69. Fomin, F.V., Fraigniaud, P., Nisse, N.: Nondeterministic graph searching: from pathwidth to treewidth. Algorithmica 53(3), 358–373 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  70. Fomin, F.V., Golovach, P.A.: Graph searching and interval completion. SIAM J. Discrete Math. 13(4), 454–464 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  71. Flocchini, P., Huang, M.J., Luccio, F.L.: Decontaminating chordal rings and tori using mobile agents. Int. J. Found. Comput. Sci. 18(3), 547–563 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  72. Flocchini, P., Huang, M.J., Luccio, F.L.: Decontamination of hypercubes by mobile agents. Networks 52(3), 167–178 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  73. Fomin, F.V., Heggernes, P., Mihai, R.: Mixed search number and linear-width of interval and split graphs. Networks 56(3), 207–214 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  74. Fomin, F.V., Heggernes, P., Telle, J.A.: Graph searching, elimination trees, and a generalization of bandwidth. Algorithmica 41(2), 73–87 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  75. Fraigniaud, P., Ilcinkas, D., Pelc, A.: Oracle size: a new measure of difficulty for communication tasks. In: Proceedings of the Twenty-Fifth Annual ACM Symposium on Principles of Distributed Computing (PODC), pp. 179–187. ACM (2006)

    Google Scholar 

  76. Fellows, M.R., Langston, M.A.: On search, decision, and the efficiency of polynomial-time algorithms. J. Comput. Syst. Sci. 49(3), 769–779 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  77. Flocchini, P., Luccio, F., Pagli, L., Santoro, N.: Network decontamination under m-immunity. Discrete Appl. Math. 201, 114–129 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  78. Flocchini, P., Luccio, F.L., Song, L.X.: Size optimal strategies for capturing an intruder in mesh networks. In: Proceedings of the International Conference on Communications in Computing (CIC), pp. 200–206. CSREA Press (2005)

    Google Scholar 

  79. Fomin, F.V., Lokshtanov, D., Saurabh, S.: Excluded grid minors and efficient polynomial-time approximation schemes. J. ACM 65(2), 10:1–10:44 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  80. Flocchini, P., Mans, B., Santoro, N.: Tree decontamination with temporary immunity. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 330–341. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92182-0_31

    Chapter  Google Scholar 

  81. Fraigniaud, P., Nisse, N.: Monotony properties of connected visible graph searching. Inf. Comput. 206(12), 1383–1393 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  82. Flocchini, P., Nayak, A., Schulz, A.: Decontamination of arbitrary networks using a team of mobile agents with limited visibility. In: 6th Annual IEEE/ACIS International Conference on Computer and Information Science (ICIS), pp. 469–474. IEEE Computer Society (2007)

    Google Scholar 

  83. Fomin, F.V.: Helicopter search problems, bandwidth and pathwidth. Discrete Appl. Math. 85(1), 59–70 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  84. Fomin, F.V.: Note on a helicopter search problem on graphs. Discrete Appl. Math. 95(1–3), 241–249 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  85. Fomin, F.V.: Searching expenditure and interval graphs. Discrete Appl. Math. 135(1–3), 97–104 (2004)

    Article  MathSciNet  Google Scholar 

  86. Flocchini, P., Santoro, N.: Distributed security algorithms by mobile agents. In: Chaudhuri, S., Das, S.R., Paul, H.S., Tirthapura, S. (eds.) ICDCN 2006. LNCS, vol. 4308, pp. 1–14. Springer, Heidelberg (2006). https://doi.org/10.1007/11947950_1

    Chapter  Google Scholar 

  87. Fomin, F.V., Thilikos, D.M.: An annotated bibliography on guaranteed graph searching. Theor. Comput. Sci. 399(3), 236–245 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  88. Fomin, F.V., Thilikos, D.M., Todinca, I.: Connected graph searching in outerplanar graphs. Electron. Notes Discrete Math. 22, 213–216 (2005)

    Article  MATH  Google Scholar 

  89. Ganian, R., et al.: Are there any good digraph width measures? J. Comb. Theory Ser. B 116, 250–286 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  90. Golovach, P.A., Heggernes, P., Mihai, R.: Edge search number of cographs. Discrete Appl. Math. 160(6), 734–743 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  91. Giannopoulou, A.C., Hunter, P., Thilikos, D.M.: LIFO-search: a min-max theorem and a searching game for cycle-rank and tree-depth. Discrete Appl. Math. 160(15), 2089–2097 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  92. Guibas, L.J., Latombe, J.-C., LaValle, S.M., Lin, D., Motwani, R.: A visibility-based pursuit-evasion problem. Int. J. Comput. Geometry Appl. 9(4/5), 471–494 (1999)

    Article  MathSciNet  Google Scholar 

  93. Golovach, P.A.: Equivalence of two formalizations of a search problem on a graph. Vestnik Leningrad Univ. Math 22, 13–19 (1989)

    MathSciNet  MATH  Google Scholar 

  94. Golovach, P.A.: A topological invariant in pursuit problems. Differ. Equ. 25, 657–661 (1989)

    MathSciNet  MATH  Google Scholar 

  95. Gustedt, J.: On the pathwidth of chordal graphs. Discrete Appl. Math. 45(3), 233–248 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  96. Hunter, P., Kreutzer, S.: Digraph measures: kelly decompositions, games, and orderings. Theor. Comput. Sci. 399(3), 206–219 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  97. Heggernes, P., Mihai, R.: Mixed search number of permutation graphs. In: Preparata, F.P., Wu, X., Yin, J. (eds.) FAW 2008. LNCS, vol. 5059, pp. 196–207. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69311-6_22

    Chapter  Google Scholar 

  98. Ilcinkas, D., Nisse, N., Soguet, D.: The cost of monotonicity in distributed graph searching. Distrib. Comput. 22(2), 117–127 (2009)

    Article  MATH  Google Scholar 

  99. Imani, N., Sarbazi-Azad, H., Zomaya, A.Y.: Capturing an intruder in product networks. J. Parallel Distrib. Comput. 67(9), 1018–1028 (2007)

    Article  MATH  Google Scholar 

  100. Imani, N., Sarbazi-Azad, H., Zomaya, A.Y.: Intruder capturing in mesh and torus networks. Int. J. Found. Comput. Sci. 19(4), 1049–1071 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  101. Johnson, T., Robertson, N., Seymour, P.D., Thomas, R.: Directed tree-width. J. Comb. Theory Ser. B 82(1), 138–154 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  102. Kinnersley, N.G.: The vertex separation number of a graph equals its pathwidth. Inf. Process. Lett. 42, 345–350 (1992)

    Article  MATH  Google Scholar 

  103. Kintali, S., Kothari, N., Kumar, A.: Approximation algorithms for digraph width parameters. Theor. Comput. Sci. 562, 365–376 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  104. Kitsunai, K., Kobayashi, Y., Komuro, K., Tamaki, H., Tano, T.: Computing directed pathwidth in o(1.89\({}^{\text{ n }}\)) time. Algorithmica 75(1), 138–157 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  105. Kreutzer, S., Ordyniak, S.: Digraph decompositions and monotonicity in digraph searching. Theor. Comput. Sci. 412(35), 4688–4703 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  106. Kirousis, L.M., Papadimitriou, C.H.: Interval graphs and searching. Discrete Math. 55(2), 181–184 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  107. Kirousis, L.M., Papadimitriou, C.H.: Searching and pebbling. Theor. Comput. Sci. 47(3), 205–218 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  108. Kinnersley, W.B., Pralat, P.: Game brush number. Discrete Appl. Math. 207, 1–14 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  109. Klein, K., Suri, S.: Pursuit evasion on polyhedral surfaces. Algorithmica 73(4), 730–747 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  110. LaPaugh, A.S.: Recontamination does not help to search a graph. J. ACM 40(2), 224–245 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  111. Fabrizio, L., Pagli, L., Santoro, N.: Network decontamination with local immunization. In: Proceedings of 20th International Parallel and Distributed Processing Symposium (IPDPS). IEEE (2006)

    Google Scholar 

  112. Luccio, F.L.: Contiguous search problem in Sierpinski graphs. Theory Comput. Syst. 44(2), 186–204 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  113. Mallach, S.: Linear ordering based MIP formulations for the vertex separation or pathwidth problem. In: Brankovic, L., Ryan, J., Smyth, W.F. (eds.) IWOCA 2017. LNCS, vol. 10765, pp. 327–340. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78825-8_27

    Chapter  Google Scholar 

  114. Megiddo, N., Hakimi, S.L., Garey, M.R., Johnson, D.S., Papadimitriou, C.H.: The complexity of searching a graph. J. ACM 35(1), 18–44 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  115. Mihai, R., Mjelde, M.: A self-stabilizing algorithm for graph searching in trees. In: Guerraoui, R., Petit, F. (eds.) SSS 2009. LNCS, vol. 5873, pp. 563–577. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05118-0_39

    Chapter  Google Scholar 

  116. Mazoit, F., Nisse, N.: Monotonicity of non-deterministic graph searching. Theor. Comput. Sci. 399(3), 169–178 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  117. Messinger, M.-E., Nowakowski, R.J., Pralat, P.: Cleaning a network with brushes. Theor. Comput. Sci. 399(3), 191–205 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  118. Markou, E., Nisse, N., Pérennes, S.: Exclusive graph searching vs. pathwidth. Inf. Comput. 252, 243–260 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  119. Monien, B., Sudborough, I.H.: Min cut is NP-complete for edge weighted trees. Theor. Comput. Sci. 58(1), 209–229 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  120. Mihai, R., Todinca, I.: Pathwidth is NP-hard for weighted trees. In: Deng, X., Hopcroft, J.E., Xue, J. (eds.) FAW 2009. LNCS, vol. 5598, pp. 181–195. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02270-8_20

    Chapter  Google Scholar 

  121. Meister, D., Telle, J.A., Vatshelle, M.: Recognizing digraphs of Kelly-width 2. Discrete Appl. Math. 158(7), 741–746 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  122. Nesetril, J., de Mendez, P.O.: Grad and classes with bounded expansion i. Decompositions. Eur. J. Comb. 29(3), 760–776 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  123. Nisse, N.: Connected graph searching in chordal graphs. Discrete Appl. Math. 157(12), 2603–2610 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  124. Nisse, N.: Algorithmic complexity: between structure and knowledge how pursuit-evasion games help. Habilitation à Diriger des Recherches, Université Nice Sophia-Antipolis (2014). https://tel.archives-ouvertes.fr/tel-00998854

  125. Nisse, N., Soguet, D.: Graph searching with advice. Theor. Comput. Sci. 410(14), 1307–1318 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  126. Nisse, N., Soares, R.P.: On the monotonicity of process number. Discrete Appl. Math. 210, 103–111 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  127. Parsons, T.D.: Pursuit-evasion in a graph. In: Alavi, Y., Lick, D.R. (eds.) Theory and Applications of Graphs. LNM, vol. 642, pp. 426–441. Springer, Berlin (1978). https://doi.org/10.1007/BFb0070400

    Chapter  Google Scholar 

  128. Parsons, T.D.: The search number of a connected graph. In: 9th Southeastern Conference on Combinatorics, Graph Theory and Computing, Congress. Numer., vol. XXI, pp. 549–554. Utilitas Mathematica (1978)

    Google Scholar 

  129. Petrov, N.N.: A problem of pursuit in the absence of information on the pursued. Differ. Uravn. 18, 1345–1352 (1982)

    MathSciNet  Google Scholar 

  130. Peng, S.-L., Ho, C.-W., Hsu, T., Ko, M.-T., Tang, C.Y.: Edge and node searching problems on trees. Theor. Comput. Sci. 240(2), 429–446 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  131. Penuel, J., Cole Smith, J., Shen, S.: Integer programming models and algorithms for the graph decontamination problem with mobile agents. Networks 61(1), 1–19 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  132. Peng, S.-L., Tang, C.Y., Ko, M.-T., Ho, C.-W., Hsu, T.: Graph searching on some subclasses of chordal graphs. Algorithmica 27(3), 395–426 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  133. Peng, S.-L., Yang, Y.-C.: On the treewidth and pathwidth of biconvex bipartite graphs. In: Cai, J.-Y., Cooper, S.B., Zhu, H. (eds.) TAMC 2007. LNCS, vol. 4484, pp. 244–255. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72504-6_22

    Chapter  Google Scholar 

  134. Robertson, N., Seymour, P.D.: Graph minors. I. Excluding a forest. J. Comb. Theory Ser. B 35(1), 39–61 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  135. Robertson, N., Seymour, P.D.: Graph minors. IV. Tree-width and well-quasi-ordering. J. Comb. Theory Ser. B 48(2), 227–254 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  136. Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths problem. J. Comb. Theory Ser. B 63(1), 65–110 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  137. Robertson, N., Seymour, P.D.: Graph minors. XX. Wagner’s conjecture. J. Comb. Theory Ser. B 92(2), 325–357 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  138. Richerby, D., Thilikos, D.M.: Searching for a visible, lazy fugitive. SIAM J. Discrete Math. 25(2), 497–513 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  139. Safari, M.A.: D-width: a more natural measure for directed tree width. In: Jędrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 745–756. Springer, Heidelberg (2005). https://doi.org/10.1007/11549345_64

    Chapter  Google Scholar 

  140. Shareghi, P., Imani, N., Sarbazi-Azad, H.: Capturing an intruder in the pyramid. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 580–590. Springer, Heidelberg (2006). https://doi.org/10.1007/11753728_58

    Chapter  Google Scholar 

  141. Skodinis, K.: Construction of linear tree-layouts which are optimal with respect to vertex separation in linear time. J. Algorithms 47(1), 40–59 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  142. Seymour, P.D., Thomas, R.: Graph searching and a min-max theorem for tree-width. J. Comb. Theory Ser. B 58(1), 22–33 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  143. Suchan, K., Todinca, I.: Pathwidth of circular-arc graphs. In: Brandstädt, A., Kratsch, D., Müller, H. (eds.) WG 2007. LNCS, vol. 4769, pp. 258–269. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74839-7_25

    Chapter  Google Scholar 

  144. Suchan, K., Villanger, Y.: Computing pathwidth faster than 2n. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 324–335. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-11269-0_27

    Chapter  Google Scholar 

  145. Stanley, D., Yang, B.: Lower bounds on fast searching. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 964–973. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10631-6_97

    Chapter  Google Scholar 

  146. Stanley, D., Yang, B.: Fast searching games on graphs. J. Comb. Optim. 22(4), 763–777 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  147. Thilikos, D.M.: Algorithms and obstructions for linear-width and related search parameters. Discrete Appl. Math. 105(1–3), 239–271 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  148. Takahashi, A., Ueno, S., Kajitani, Y.: Mixed searching and proper-path-width. Theor. Comput. Sci. 137(2), 253–268 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  149. Yu, W., Austrin, P., Pitassi, T., Liu, D.: Inapproximability of treewidth and related problems. J. Artif. Intell. Res. 49, 569–600 (2014)

    Article  MATH  Google Scholar 

  150. Xue, Y., Yang, B.: The fast search number of a Cartesian product of graphs. Discrete Appl. Math. 224, 106–119 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  151. Xue, Y., Yang, B., Zhong, F., Zilles, S.: Fast searching on complete k-partite graphs. In: Chan, T.-H.H., Li, M., Wang, L. (eds.) COCOA 2016. LNCS, vol. 10043, pp. 159–174. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48749-6_12

    Chapter  Google Scholar 

  152. Yang, B.: Strong-mixed searching and pathwidth. J. Comb. Optim. 13(1), 47–59 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  153. Yang, B.: Fast edge searching and fast searching on graphs. Theor. Comput. Sci. 412(12–14), 1208–1219 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  154. Yang, B.: Fast-mixed searching and related problems on graphs. Theor. Comput. Sci. 507, 100–113 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  155. Yang, B., Cao, Y.: Directed searching digraphs: monotonicity and complexity. In: Cai, J.-Y., Cooper, S.B., Zhu, H. (eds.) TAMC 2007. LNCS, vol. 4484, pp. 136–147. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72504-6_12

    Chapter  Google Scholar 

  156. Yang, B., Cao, Y.: Monotonicity of strong searching on digraphs. J. Comb. Optim. 14(4), 411–425 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  157. Yang, B., Cao, Y.: Digraph searching, directed vertex separation and directed pathwidth. Discrete Appl. Math. 156(10), 1822–1837 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  158. Yang, B., Cao, Y.: Monotonicity in digraph search problems. Theor. Comput. Sci. 407(1–3), 532–544 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  159. Yang, B., Cao, Y.: On the monotonicity of weak searching. In: Hu, X., Wang, J. (eds.) COCOON 2008. LNCS, vol. 5092, pp. 52–61. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69733-6_6

    Chapter  Google Scholar 

  160. Yang, B., Cao, Y.: Standard directed search strategies and their applications. J. Comb. Optim. 17(4), 378–399 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  161. Yang, B., Dyer, D., Alspach, B.: Sweeping graphs with large clique number. Discrete Math. 309(18), 5770–5780 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  162. Yang, B., Zhang, R., Cao, Y.: Searching cycle-disjoint graphs. In: Dress, A., Xu, Y., Zhu, B. (eds.) COCOA 2007. LNCS, vol. 4616, pp. 32–43. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73556-4_6

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Nisse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nisse, N. (2019). Network Decontamination. In: Flocchini, P., Prencipe, G., Santoro, N. (eds) Distributed Computing by Mobile Entities. Lecture Notes in Computer Science(), vol 11340. Springer, Cham. https://doi.org/10.1007/978-3-030-11072-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11072-7_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11071-0

  • Online ISBN: 978-3-030-11072-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics