Skip to main content

Fault-Tolerant Mobile Robots

  • Chapter
  • First Online:
Book cover Distributed Computing by Mobile Entities

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11340))

Abstract

This chapter surveys crash tolerance, self-stabilization, Byzantine fault-tolereance, and resilience to inaccuracies for the main building blocks in mobile robots networks: gathering, convergence, scattering, leader election, and flocking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An event occurs with high probability if it occurs with probability greater than \(1-o(1/n^\varepsilon )\) with \(\varepsilon >0\).

References

  1. Abraham, I., Amit, Y., Dolev, D.: Optimal resilience asynchronous approximate agreement. In: Higashino, T. (ed.) OPODIS 2004. LNCS, vol. 3544, pp. 229–239. Springer, Heidelberg (2005). https://doi.org/10.1007/11516798_17

    Chapter  Google Scholar 

  2. Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile robots. SIAM J. Comput. 36(1), 56–82 (2006)

    Article  MathSciNet  Google Scholar 

  3. Auger, C., Bouzid, Z., Courtieu, P., Tixeuil, S., Urbain, X.: Certified impossibility results for Byzantine-tolerant mobile robots. In: Higashino, T., Katayama, Y., Masuzawa, T., Potop-Butucaru, M., Yamashita, M. (eds.) SSS 2013. LNCS, vol. 8255, pp. 178–190. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03089-0_13

    Chapter  Google Scholar 

  4. Aurenhammer, F.: Voronoi diagrams: a survey of a fundamental geometric data structure. ACM Comput. Surv. 23(3), 345–405 (1991)

    Article  Google Scholar 

  5. Balabonski, T., Delga, A., Rieg, L., Tixeuil, S., Urbain, X.: Synchronous gathering without multiplicity detection: a certified algorithm. In: Bonakdarpour, B., Petit, F. (eds.) SSS 2016. LNCS, vol. 10083, pp. 7–19. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49259-9_2

    Chapter  Google Scholar 

  6. Bhagat, S., Gan Chaudhuri, S., Mukhopadhyaya, K.: Fault-tolerant gathering of asynchronous oblivious mobile robots under one-axis agreement. In: Rahman, M.S., Tomita, E. (eds.) WALCOM 2015. LNCS, vol. 8973, pp. 149–160. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15612-5_14

    Chapter  Google Scholar 

  7. Bhagat, S., Mukhopadhyaya, K.: Fault-tolerant gathering of semi-synchronous robots. In: Proceedings of 18th International Conference on Distributed Computing and Networking (ICDCN), Hyderabad, India, p. 6, January 2017

    Google Scholar 

  8. Borowsky, E., Gafni, E., Lynch, N.A., Rajsbaum, S.: The BG distributed simulation algorithm. Distrib. Comput. 14(3), 127–146 (2001)

    Article  Google Scholar 

  9. Bouzid, Z., Das, S., Tixeuil, S.: Gathering of mobile robots tolerating multiple crash faults. In: Proceedings of 33rd IEEE International Conference on Distributed Computing Systems (ICDCS), Philadelphia, PA, USA, pp. 337–346, July 2013

    Google Scholar 

  10. Bouzid, Z., Gradinariu Potop-Butucaru, M., Tixeuil, S.: Byzantine convergence in robot networks: the price of asynchrony. In: Abdelzaher, T., Raynal, M., Santoro, N. (eds.) OPODIS 2009. LNCS, vol. 5923, pp. 54–70. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10877-8_7

    Chapter  Google Scholar 

  11. Bouzid, Z., Potop-Butucaru, M.G., Tixeuil, S.: Optimal Byzantine-resilient convergence in uni-dimensional robot networks. Theoret. Comput. Sci. 411(34–36), 3154–3168 (2010)

    Article  MathSciNet  Google Scholar 

  12. Bramas, Q., Tixeuil, S.: Wait-free gathering without chirality. In: Scheideler, C. (ed.) Structural Information and Communication Complexity. LNCS, vol. 9439, pp. 313–327. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25258-2_22

    Chapter  Google Scholar 

  13. Bramas, Q., Tixeuil, S.: The random bit complexity of mobile robots scattering. Int. J. Found. Comput. Sci. 28(2), 111–134 (2017)

    Article  MathSciNet  Google Scholar 

  14. Canepa, D., Defago, X., Izumi, T., Potop-Butucaru, M.: Flocking with oblivious robots. In: Bonakdarpour, B., Petit, F. (eds.) SSS 2016. LNCS, vol. 10083, pp. 94–108. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49259-9_8

    Chapter  Google Scholar 

  15. Canepa, D., Potop-Butucaru, M.G.: Stabilizing flocking via leader election in robot networks. In: Masuzawa, T., Tixeuil, S. (eds.) SSS 2007. LNCS, vol. 4838, pp. 52–66. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76627-8_7

    Chapter  Google Scholar 

  16. Clément, J., Défago, X., Potop-Butucaru, M.G., Izumi, T., Messika, S.: The cost of probabilistic agreement in oblivious robot networks. Inf. Process. Lett. 110(11), 431–438 (2010)

    Article  MathSciNet  Google Scholar 

  17. Cohen, R., Peleg, D.: Robot convergence via center-of-gravity algorithms. In: Královic̆, R., Sýkora, O. (eds.) SIROCCO 2004. LNCS, vol. 3104, pp. 79–88. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27796-5_8

    Chapter  Google Scholar 

  18. Cohen, R., Peleg, D.: Convergence properties of the gravitational algorithm in asynchronous robot systems. SIAM J. Comput. 34(6), 1516–1528 (2005)

    Article  MathSciNet  Google Scholar 

  19. Cohen, R., Peleg, D.: Convergence of autonomous mobile robots with inaccurate sensors and movements. SIAM J. Comput. 38(1), 276–302 (2008)

    Article  MathSciNet  Google Scholar 

  20. Courtieu, P., Rieg, L., Tixeuil, S., Urbain, X.: Impossibility of gathering, a certification. Inf. Process. Lett. 115(3), 447–452 (2015)

    Article  MathSciNet  Google Scholar 

  21. Das, S., Flocchini, P., Prencipe, G., Santoro, N., Yamashita, M.: Autonomous mobile robots with lights. Theoret. Comput. Sci. 609, 171–184 (2016)

    Article  MathSciNet  Google Scholar 

  22. Défago, X., Gradinariu, M., Messika, S., Raipin-Parvédy, P.: Fault-tolerant and self-stabilizing mobile robots gathering. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 46–60. Springer, Heidelberg (2006). https://doi.org/10.1007/11864219_4

    Chapter  Google Scholar 

  23. Défago, X., Potop-Butucaru, M.G., Clément, J., Messika, S., Raipin Parvédy, P.: Fault and Byzantine tolerant self-stabilizing mobile robots gathering - feasibility study. CoRR abs/1602.05546 (2016)

    Google Scholar 

  24. Dieudonné, Y., Levé, F., Petit, F., Villain, V.: Deterministic geoleader election in disoriented anonymous systems. Theoret. Comput. Sci. 506, 43–54 (2013)

    Article  MathSciNet  Google Scholar 

  25. Dieudonne, Y., Petit, F.: Circle formation of weak robots and Lyndon words. Inf. Process. Lett. 101(4), 156–162 (2007)

    Article  MathSciNet  Google Scholar 

  26. Dieudonné, Y., Petit, F.: Robots and demons (the code of the origins). In: Crescenzi, P., Prencipe, G., Pucci, G. (eds.) FUN 2007. LNCS, vol. 4475, pp. 108–119. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72914-3_11

    Chapter  Google Scholar 

  27. Dieudonné, Y., Petit, F.: Scatter of robots. Parallel Process. Lett. 19(1), 175–184 (2009)

    Article  MathSciNet  Google Scholar 

  28. Dieudonné, Y., Petit, F.: Self-stabilizing gathering with strong multiplicity detection. Theoret. Comput. Sci. 428, 47–57 (2012)

    Article  MathSciNet  Google Scholar 

  29. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun. ACM 17(11), 643–644 (1974)

    Article  Google Scholar 

  30. Dolev, D., Lynch, N.A., Pinter, S.S., Stark, E.W., Weihl, W.E.: Reaching approximate agreement in the presence of faults. J. ACM (JACM) 33(3), 499–516 (1986)

    Article  MathSciNet  Google Scholar 

  31. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous robots with limited visibility. Theoret. Comput. Sci. 337(1–3), 147–168 (2005)

    Article  MathSciNet  Google Scholar 

  32. Gervasi, V., Prencipe, G.: Flocking by a set of autonomous mobile robots. Technical report TR-01-24, Universitat di Pisa (2001)

    Google Scholar 

  33. Gervasi, V., Prencipe, G.: Coordination without communication: the case of the flocking problem. Discret. Appl. Math. (2003)

    Google Scholar 

  34. Heriban, A., Défago, X., Tixeuil, S.: Optimally gathering two robots. In: Bellavista, P., Garg, V.K. (eds.) Proceedings of the 19th International Conference on Distributed Computing and Networking. ICDCN 2018, 4–7 January 2018, Varanasi, India, pp. 3:1–3:10. ACM, New York (2018)

    Google Scholar 

  35. Izumi, T., Bouzid, Z., Tixeuil, S., Wada, K.: The BG-simulation for Byzantine mobile robots. CoRR abs/1106.0113 (2011)

    Google Scholar 

  36. Izumi, T., Bouzid, Z., Tixeuil, S., Wada, K.: Brief announcement: the BG-simulation for Byzantine mobile robots. In: Peleg, D. (ed.) DISC 2011. LNCS, vol. 6950, pp. 330–331. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24100-0_32

    Chapter  Google Scholar 

  37. Izumi, T., Kaino, D., Potop-Butucaru, M.G., Tixeuil, S.: On time complexity for connectivity-preserving scattering of mobile robots. Theoret. Comput. Sci. 738, 42–52 (2018)

    Article  MathSciNet  Google Scholar 

  38. Izumi, T., et al.: The gathering problem for two oblivious robots with unreliable compasses. SIAM J. Comput. 41(1), 26–46 (2012)

    Article  MathSciNet  Google Scholar 

  39. Qadi, A., Huang, J., Farritor, S., Goddard, S.: Localization and follow-the-leader control of a heterogeneous group of mobile robots. IEEE/ASME Trans. Mechatron. 11, 205–215 (2006)

    Article  Google Scholar 

  40. Lindhe, M.: A flocking and obstacle avoidance algorithm for mobile robots. Ph.D. thesis, KTH Stockholm (2004)

    Google Scholar 

  41. Ooshita, F., Tixeuil, S.: On the self-stabilization of mobile oblivious robots in uniform rings. Theoret. Comput. Sci. 568, 84–96 (2015)

    Article  MathSciNet  Google Scholar 

  42. Pattanayak, D., Mondal, K., Ramesh, H., Mandal, P.S.: Fault-tolerant gathering of mobile robots with weak multiplicity detection. In: Proceedings of the 18th International Conference on Distributed Computing and Networking, 5–7 January 2017, Hyderabad, India, p. 7. ACM (2017)

    Google Scholar 

  43. Prencipe, G.: Corda: distributed coordination of a set of autonomous mobile robots. In: Proceedings of ERSADS, May 2001, pp. 185–190 (2001)

    Google Scholar 

  44. Renaud, P., Cervera, E., Martinet, P.: Towards a reliable vision-based mobile robot formation control. In: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan, 28 September–2 October 2004, pp. 3176–3181. IEEE (2004)

    Google Scholar 

  45. Souissi, S.: Fault-resilient cooperation of autonomous mobile robots with unreliable compass sensors. Ph.D. thesis, Graduate School of Information Science, Japan Advanced Institute of Science and Technology (JAIST), September 2007

    Google Scholar 

  46. Souissi, S., Défago, X., Yamashita, M.: Using eventually consistent compasses to gather memory-less mobile robots with limited visibility. ACM Trans. Auton. Adapt. Syst. 4(1), 9:1–9:27 (2009)

    Article  Google Scholar 

  47. Souissi, S., Izumi, T., Wada, K.: Oracle-based flocking of mobile robots in crash-recovery model. Theoret. Comput. Sci. 412(33), 4350–4360 (2011)

    Article  MathSciNet  Google Scholar 

  48. Suzuki, I., Yamashita, M.: A theory of distributed anonymous mobile robots formation and agreement problems. Technical report, Department of Electrical Engineering and Computer Science, Wisconsin University of Milwaukee, June 1994

    Google Scholar 

  49. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)

    Article  MathSciNet  Google Scholar 

  50. Viglietta, G.: Rendezvous of two robots with visible bits. In: Flocchini, P., Gao, J., Kranakis, E., Meyer auf der Heide, F. (eds.) ALGOSENSORS 2013. LNCS, vol. 8243, pp. 291–306. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-45346-5_21

    Chapter  Google Scholar 

  51. Yang, Y., Souissi, S., Défago, X., Takizawa, M.: Fault-tolerant flocking for a group of autonomous mobile robots. J. Syst. Softw. 84(1), 29–36 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Potop-Butucaru .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Défago, X., Potop-Butucaru, M., Tixeuil, S. (2019). Fault-Tolerant Mobile Robots. In: Flocchini, P., Prencipe, G., Santoro, N. (eds) Distributed Computing by Mobile Entities. Lecture Notes in Computer Science(), vol 11340. Springer, Cham. https://doi.org/10.1007/978-3-030-11072-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11072-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11071-0

  • Online ISBN: 978-3-030-11072-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics