Skip to main content

Dropout-Based Active Learning for Regression

  • Conference paper
  • First Online:
Analysis of Images, Social Networks and Texts (AIST 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11179))

Abstract

Active learning is relevant and challenging for high-dimensional regression models when the annotation of the samples is expensive. Yet most of the existing sampling methods cannot be applied to large-scale problems, consuming too much time for data processing. In this paper, we propose a fast active learning algorithm for regression, tailored for neural network models. It is based on uncertainty estimation from stochastic dropout output of the network. Experiments on both synthetic and real-world datasets show comparable or better performance (depending on the accuracy metric) as compared to the baselines. This approach can be generalized to other deep learning architectures. It can be used to systematically improve a machine-learning model as it offers a computationally efficient way of sampling additional data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rasmussen, C.E.: Gaussian processes in machine learning. In: Bousquet, O., von Luxburg, U., Rätsch, G. (eds.) ML 2003. LNCS (LNAI), vol. 3176, pp. 63–71. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28650-9_4

    Chapter  Google Scholar 

  2. Szegedy, C., et al.: Inception-v4, inception-resnet and the impact of residual connections on learning. In: AAAI, vol. 4. (2017)

    Google Scholar 

  3. Sainath, T.N., et al.: Deep convolutional neural networks for LVCSR. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE (2013)

    Google Scholar 

  4. Baldi, P., Sadowski, P., Whiteson, D.: Searching for exotic particles in high-energy physics with deep learning. Nat. Commun. 5, 4308 (2014)

    Article  Google Scholar 

  5. Anjos, O., et al.: Neural networks applied to discriminate botanical origin of honeys. Food Chem. 175, 128–136 (2015)

    Article  Google Scholar 

  6. Schütt, K.T., et al.: Quantum-chemical insights from deep tensor neural networks. Nat. Commun. 8, 13890 (2017)

    Article  Google Scholar 

  7. Hinton, G.E., et al.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012)

  8. Tieleman, T., Hinton, G.: Lecture 65.-rmsprop: divide the gradient by a running average of its recent magnitude. COURSERA: Neural Netw. Mach. Learn. 4(2), 26–31 (2012)

    Google Scholar 

  9. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  10. Settles, B.: Active learning. Synth. Lect. Artif. Intell. Mach. Learn. 6(1), 1–114 (2012)

    Article  MathSciNet  Google Scholar 

  11. Fedorov, V.: Theory of Optimal Experiments. Elsevier, Amsterdam (1972)

    Google Scholar 

  12. Forrester, A., Keane, A.: Engineering Design via Surrogate Modelling: A Practical Guide. Wiley, Hoboken (2008)

    Book  Google Scholar 

  13. Sacks, J., et al.: Design and analysis of computer experiments. Stat. Sci. 4, 409–423 (1989)

    Article  MathSciNet  Google Scholar 

  14. Burnaev, E., Panov, M.: Adaptive design of experiments based on gaussian processes. In: Gammerman, A., Vovk, V., Papadopoulos, H. (eds.) SLDS 2015. LNCS (LNAI), vol. 9047, pp. 116–125. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17091-6_7

    Chapter  Google Scholar 

  15. Neal, R.M.: Bayesian Learning for Neural Networks, vol. 118. Springer, New York (2012)

    MATH  Google Scholar 

  16. Seung, H.S., Opper, M., Sompolinsky, H.: Query by committee. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory. ACM (1992)

    Google Scholar 

  17. Melville, P., Mooney, R.J.: Diverse ensembles for active learning. In: Proceedings of the Twenty-First International Conference on Machine Learning. ACM (2004)

    Google Scholar 

  18. Mamitsuka, N.A.H.: Query learning strategies using boosting and bagging. In: Machine Learning: Proceedings of the Fifteenth International Conference (ICML 1998), vol. 1. Morgan Kaufmann Publishers Inc. (1998)

    Google Scholar 

  19. Li, H., Wang, X., Ding, S.: Research and development of neural network ensembles: a survey. Artif. Intell. Rev. 49(4), 455–479 (2018)

    Article  Google Scholar 

  20. Srivastava, N., et al.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  21. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: International Conference on Machine Learning (2016)

    Google Scholar 

  22. Maeda, S.: A Bayesian encourages dropout. arXiv preprint arXiv:1412.7003 (2014)

  23. Gal, Y.: Uncertainty in Deep Learning. University of Cambridge, Cambridge (2016)

    Google Scholar 

  24. Kampffmeyer, M., Salberg, A.-B., Jenssen, R.: Semantic segmentation of small objects and modeling of uncertainty in urban remote sensing images using deep convolutional neural networks. In: CVPRW IEEE Conference (2016)

    Google Scholar 

  25. Gal, Y., Islam, R., Ghahramani, Z.: Deep Bayesian active learning with image data. arXiv preprint arXiv:1703.02910 (2017)

  26. Fernandes, K., Vinagre, P., Cortez, P.: A proactive intelligent decision support system for predicting the popularity of online news. In: Pereira, F., Machado, P., Costa, E., Cardoso, A. (eds.) EPIA 2015. LNCS (LNAI), vol. 9273, pp. 535–546. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23485-4_53

    Chapter  Google Scholar 

  27. Graf, F., Kriegel, H.-P., Schubert, M., Pölsterl, S., Cavallaro, A.: 2D image registration in CT images using radial image descriptors. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011. LNCS, vol. 6892, pp. 607–614. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23629-7_74

    Chapter  Google Scholar 

  28. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of ICML, vol. 30, no. 1 (2013)

    Google Scholar 

  29. Al-Rfou, R., et al.: Theano: a Python framework for fast computation of mathematical expressions. arXiv preprint arXiv:1605.02688, vol. 472, p. 473 (2016)

  30. Dieleman, S., et al.: Lasagne: first release, August 2015 (2016). https://doi.org/10.5281/zenodo.27878

  31. Dua, D., Karra Taniskidou, E.: UCI Machine Learning Repository. University of California, School of Information and Computer Science, Irvine, CA (2017). http://archive.ics.uci.edu/ml

  32. Buza, K.: Feedback prediction for blogs. In: Spiliopoulou, M., Schmidt-Thieme, L., Janning, R. (eds.) Data Analysis, Machine Learning and Knowledge Discovery. SCDAKO, pp. 145–152. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-01595-8_16

    Chapter  Google Scholar 

  33. Nugteren, C., Codreanu, V.: CLTune: a generic auto-tuner for OpenCL kernels. In: 2015 IEEE 9th International Symposium on Embedded Multicore/Many-Core Systems-on-Chip (MCSoC). IEEE (2015)

    Google Scholar 

  34. Bertin-Mahieux, T., et al.: The million song dataset. In: ISMIR, vol. 2, no. 9 (2011)

    Google Scholar 

  35. Shannon, P., et al.: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13(11), 2498–2504 (2003)

    Article  Google Scholar 

  36. Rosenbrock, H.H.: An automatic method for finding the greatest or least value of a function. Comput. J. 3(3), 175–184 (1960)

    Article  MathSciNet  Google Scholar 

  37. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2), 201–213 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work was supported by the Skoltech NGP Program No. 2016-7/NGP (a Skoltech-MIT joint project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgenii Tsymbalov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tsymbalov, E., Panov, M., Shapeev, A. (2018). Dropout-Based Active Learning for Regression. In: van der Aalst, W., et al. Analysis of Images, Social Networks and Texts. AIST 2018. Lecture Notes in Computer Science(), vol 11179. Springer, Cham. https://doi.org/10.1007/978-3-030-11027-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11027-7_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11026-0

  • Online ISBN: 978-3-030-11027-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics