Skip to main content

Discussion on Advanced Targeted Nanomedical Application Scenarios for Treatment of Some Chronic Diseases

  • Chapter
  • First Online:
Advanced Targeted Nanomedicine

Part of the book series: Nanomedicine and Nanotoxicology ((NANOMED))

Abstract

In this chapter, classical discussions on the possible application of the ATN solution to the treatment of some chronic diseases are provided. The diseases discussed include cancer, Alzheimer’s disease, acquired immunodeficiency syndrome (AIDS) and cardiovascular diseases. For each disease, discussion trails the pathophysiology and pathways of its occurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516

    Article  CAS  Google Scholar 

  2. Poon IK, Lucas CD, Rossi AG, Ravichandran KS (2014) Apoptotic cell clearance: basic biology and therapeutic potential. Nat Rev Immunol 14(3):166–180

    Article  CAS  Google Scholar 

  3. Fouad YA, Aanei C (2017) Revisiting the hallmarks of cancer. Am J Cancer Res 7(5):1016–1036

    CAS  Google Scholar 

  4. Wang C, Youle RJ (2009) The role of mitochondria in apoptosis. Annu Rev Genet 43:95–118

    Article  CAS  Google Scholar 

  5. Fulda S, Debatin KM (2006) Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 25(34):4798–4811

    Article  CAS  Google Scholar 

  6. Tsujimoto Y (1998) Role of Bcl-2 family proteins in apoptosis: apoptosomes or mitochondria? Genes Cells 3(11):697–707

    Article  CAS  Google Scholar 

  7. Martinez-Caballero S, Dejean LM, Kinnally MS, Oh KJ, Mannella CA, Kinnally KW (2009) Assembly of the mitochondrial apoptosis-induced channel, MAC. J Biol Chem 284(18):12235–12245

    Article  CAS  Google Scholar 

  8. Twiddy D, Brown DG, Adrain C, Jukes R, Martin SJ, Cohen GM, MacFarlane M, Cain K (2004) Pro-apoptotic proteins released from the mitochondria regulate the protein composition and caspase-processing activity of the native Apaf-1/caspase-9 apoptosome complex. J Biol Chem 279(19):19665–19682

    Article  CAS  Google Scholar 

  9. Murali AK, Mehrotra S (2011) Apoptosis: an ubiquitous T cell immunomodulator. J Clin Cell Immunol S3:2–12

    Google Scholar 

  10. Chude-Okonkwo UA, Malekian R, Maharaj BT, Chude CC (2015) Bio-inspired approach for eliminating redundant nanodevices in Internet of Bio-Nano Things. In: IEEE Globecom workshops (GC Wkshps), Dec 6, pp 1–6

    Google Scholar 

  11. Johnstone RW, Ruefli AA, Lowe SW (2002) Apoptosis: a link between cancer genetics and chemotherapy. Cell 108(2002):153–164

    Article  CAS  Google Scholar 

  12. Schmitt CA, Fridman JS, Yang M, Baranow E, Hoffman RM, Lowe SW (2002) Dissecting p53 tumor suppressor functions in vivo. Cancer Cell 1(2002):289–291

    Article  CAS  Google Scholar 

  13. Von Manstein V, Min Yang C, Richter D, Delis N, Vafaizadeh V, Groner B (2013) Resistance of cancer cells to targeted therapies through the activation of compensating signaling loops. Curr Signal Transduct Ther 8(3):193–202

    Article  Google Scholar 

  14. Luqmani YA (2005) Mechanisms of drug resistance in cancer chemotherapy. Med Principles Pract 14(Suppl. 1):35–48

    Article  Google Scholar 

  15. Fernando J, Jones R (2015) The principles of cancer treatment by chemotherapy. Surgery (Oxford) 33(3):131–135

    Article  Google Scholar 

  16. Aslam MS, Naveed S, Ahmed A, Abbas Z, Gull I, Athar MA (2014) Side effects of chemotherapy in cancer patients and evaluation of patients opinion about starvation based differential chemotherapy. J Cancer Ther 5(8):817–822

    Article  Google Scholar 

  17. Baskar R, Lee KA, Yeo R, Yeoh KW (2012) Cancer and radiation therapy: current advances and future directions. Int J Med Sci 9(3):193–199

    Article  Google Scholar 

  18. Thomas J, Beinhorn C, Norton D, Richardson M, Sumler SS, Frenkel M (2010) Managing radiation therapy side effects with complementary medicine. J Soc Integr Oncol 8(2):65–80

    Google Scholar 

  19. Lesterhuis WJ, Haanen JB, Punt CJ (2011) Cancer immunotherapy–revisited. Nat Rev Drug Discovery 10(8):591–600

    Article  CAS  Google Scholar 

  20. Kroschinsky F, Stölzel F, von Bonin S, Beutel G, Kochanek M, Kiehl M, Schellongowski P (2017) New drugs, new toxicities: severe side effects of modern targeted and immunotherapy of cancer and their management. Crit Care 21(1):89–100

    Article  Google Scholar 

  21. Stokes Z, Chan S (2003) Principles of cancer treatment by hormone therapy. Surgery Oxford Int Ed 21(11):280–283

    Article  Google Scholar 

  22. Fairchild A, Tirumani SH, Rosenthal MH, Howard SA, Krajewski KM, Nishino M, Shinagare AB, Jagannathan JP, Ramaiya NH (2015) Hormonal therapy in oncology: a primer for the radiologist. Am J Roentgenol 204(6):W620–W630

    Article  Google Scholar 

  23. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  CAS  Google Scholar 

  24. Mehrgou A, Akouchekian M (2016) The importance of BRCA1 and BRCA2 genes mutations in breast cancer development. Med J Islamic Republic of Iran 30:369–381

    Google Scholar 

  25. Prince M, Wimo A, Guerchet M, Ali GC, Wu YT, Prina M (2015) Alzheimer’s disease international. World Alzheimer report 2015: the global impact of Dementia: an analysis of prevalence, incidence, cost and trend

    Google Scholar 

  26. Friedrich RP, Tepper K, Rönicke R, Soom M, Westermann M, Reymann K, Kaether C, Fändrich M (2010) Mechanism of amyloid plaque formation suggests an intracellular basis of Aβ pathogenicity. Proc Natl Acad Sci 107(5):1942–1947

    Article  CAS  Google Scholar 

  27. Lacosta AM, Insua D, Badi H, Pesini P, Sarasa M (2017) Neurofibrillary tangles of Aβ x-40 in Alzheimer’s disease brains. J Alzheimers Dis 58(3):661–667

    Article  CAS  Google Scholar 

  28. Gregori M, Masserini M, Mancini S (2015) Nanomedicine for the treatment of Alzheimer’s disease. Nanomedicine 10(7):1203–1218

    Article  CAS  Google Scholar 

  29. Hernando S, Gartziandia O, Herran E, Pedraz JL, Igartua M, Hernandez RM (2016) Advances in nanomedicine for the treatment of Alzheimer’s and Parkinson’s diseases. Nanomedicine 11(10):1267–1285

    Article  CAS  Google Scholar 

  30. Georganopoulou DG, Chang L, Nam JM, Thaxton CS, Mufson EJ, Klein WL, Mirkin CA (2005) Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer’s disease. Proc Natl Acad Sci 102(7):2273–2276

    Article  CAS  Google Scholar 

  31. Fonseca-Santos B, Gremião MP, Chorilli M (2015) Nanotechnology-based drug delivery systems for the treatment of Alzheimer’s disease. Int J Nanomed 10:4981–5003

    Article  CAS  Google Scholar 

  32. Saraiva C, Praça C, Ferreira R, Santos T, Ferreira L, Bernardino L (2016) Nanoparticle-mediated brain drug delivery: overcoming blood–brain barrier to treat neurodegenerative diseases. J Controlled Release 235:34–47

    Article  CAS  Google Scholar 

  33. Calles NR, Evans D, Terlonge D (2006) Pathophysiology of the human immunodeficiency virus. In: HIV Curriculum for the health professional. Baylor International Pediatric AIDS Initiative, Baylor College of Medicine, Houston, TX, pp 11–22

    Google Scholar 

  34. Richman DD (2000) Normal physiology and HIV pathophysiology of human T-cell dynamics. J Clin Investig 105(5):565–566

    Article  CAS  Google Scholar 

  35. Okoye AA, Picker LJ (2013) CD 4 + T-cell depletion in HIV infection: mechanisms of immunological failure. Immunol Rev 254(1):54–64

    Article  Google Scholar 

  36. Coffin J, Swanstrom R (2013) HIV pathogenesis: dynamics and genetics of viral populations and infected cells. Cold Spring Harbor Perspect Med 3(1):a012526

    Article  Google Scholar 

  37. Becerra JC, Bildstein LS, Gach JS (2016) Recent insights into the HIV/AIDS pandemic. Microb Cell 3(9):451–475

    Article  CAS  Google Scholar 

  38. Tang H, Mao Y, Shi CX, Han J, Wang L, Xu J, Qin Q, Detels R, Wu Z (2014) Baseline CD4 cell counts of newly diagnosed HIV cases in China: 2006–2012. PLoS ONE 9(6):e96098

    Article  Google Scholar 

  39. Poveda E, Tabernilla A (2016) New insights into HIV-1 persistence in sanctuary sites during antiretroviral therapy. AIDS Rev 18(1):55–55

    Google Scholar 

  40. Cuevas JM, Geller R, Garijo R, López-Aldeguer J, Sanjuán R (2015) Extremely high mutation rate of HIV-1 in vivo. PLoS Biol 13(9):e1002251

    Article  Google Scholar 

  41. Curley P, Liptrott NJ, Owen A (2017) Advances in nanomedicine drug delivery applications for HIV therapy. Future Sci OA 4(1):1–6

    Google Scholar 

  42. Mamo T, Moseman EA, Kolishetti N, Salvador-Morales C, Shi J, Kuritzkes DR, Langer R, Andrian UV, Farokhzad OC (2010) Emerging nanotechnology approaches for HIV/AIDS treatment and prevention. Nanomedicine 5(2):269–285

    Article  CAS  Google Scholar 

  43. Kaushik A, Jayant RD, Nair M (2018) Nanomedicine for neuroHIV/AIDS management. Nanomedicine (London, England) 13(7):669–673

    Article  CAS  Google Scholar 

  44. Tebas P, Stein D, Tang WW, Frank I, Wang SQ, Lee G, Spratt SK, Surosky RT, Giedlin MA, Nichol G, Holmes MC (2014) Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 370(10):901–910

    Article  CAS  Google Scholar 

  45. Celermajer DS et al (2012) Cardiovascular disease in the developing world. J Am Coll Cardiol 60(14):1207–1216

    Article  Google Scholar 

  46. Kengne AP, Amoah AGB, Mbanya JC (2005) Cardiovascular complications of diabetes mellitus in sub-Saharan Africa. Circulation 112(23):3592–3601

    Article  Google Scholar 

  47. Saric M, Kronzon I (2012) Aortic atherosclerosis and embolic events. Curr Cardiol Rep 14(3):342–349

    Article  Google Scholar 

  48. Di Tullio MR, Homma S (2002) Mechanisms of cardioembolic stroke. Curr Cardiol Rep 4(2):141–148

    Article  Google Scholar 

  49. Maisch B, Pankuweit S, Karatolios K, Ristić AD (2006) Invasive techniques: from diagnosis to treatment. Rheumatology 45(4):iv32–iv38

    Article  Google Scholar 

  50. Slijkhuis W, Mali W, Appelman Y (2009) A historical perspective towards a non-invasive treatment for patients with atherosclerosis. Netherlands Heart J 17(4):140–144

    Article  CAS  Google Scholar 

  51. Ma TK, Kam KK, Yan BP, Lam YY (2010) Renin–angiotensin–aldosterone system blockade for cardiovascular diseases: current status. Br J Pharmacol 160(6):1273–1292

    Article  CAS  Google Scholar 

  52. Borer JS (2007) Angiotensin-converting enzyme inhibition: a landmark advance in treatment for cardiovascular diseases. Eur Heart J Suppl 9(suppl_E):E2–E9

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Malekian .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chude-Okonkwo, U., Malekian, R., Maharaj, B.T. (2019). Discussion on Advanced Targeted Nanomedical Application Scenarios for Treatment of Some Chronic Diseases. In: Advanced Targeted Nanomedicine. Nanomedicine and Nanotoxicology. Springer, Cham. https://doi.org/10.1007/978-3-030-11003-1_7

Download citation

Publish with us

Policies and ethics