Skip to main content

Classical Framework for Case-Driven Design of Advanced Targeted Nanomedical Solution

  • Chapter
  • First Online:
Book cover Advanced Targeted Nanomedicine

Part of the book series: Nanomedicine and Nanotoxicology ((NANOMED))

  • 362 Accesses

Abstract

The development and deployment of ATN solutions require relentless interdisciplinary efforts in order to bring the system and its tremendous promises to reality. The level of the interdisciplinary commitment can encompass diverse fields such as nanotechnology, communication engineering, electronics, medical biology, systems biology, computational biology, synthetic biology, genetic engineering, molecular engineering, molecular/supramolecular chemistry, atomic/molecular physics, biophysics, bioelectronics, signal processing, information theory, advanced mathematics and translational science (Farokhzad and Langer in Adv Drug Deliv Rev 58:1456–1459, 2006, [1]). With this knowledge spread and planning, the design and development/fabrication of an ATN solution for a particular health challenge can be effectively achieved. It is therefore necessary to develop a framework that will serve as a guide for researchers through the design process and the steps in achieving the ATN goal. This exercise will eventually translate the ATN from the paper-based fundamental research, through the experimental stage to clinical reality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Farokhzad OC, Langer R (2006) Nanomedicine: developing smarter therapeutic and diagnostic modalities. Adv Drug Deliv Rev 58:1456–1459

    Article  CAS  Google Scholar 

  2. Chude-Okonkwo UAK, Malekian R, Maharaj BT (2016) Molecular communication model for targeted drug delivery in multiple disease sites with diversely expressed enzymes. IEEE Trans Nanobiosci 15(3):230–245

    Article  Google Scholar 

  3. Alexis F, Pridgenm E, Molnar LK, Farokhzad OC (2008) Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 5:505–515

    Article  CAS  Google Scholar 

  4. Kowalczyk SW, Blosser TR, Dekker C (2011) Biomimetic nanopores: learning from and about nature. Trends Biotechnol 29:607–614

    Article  CAS  Google Scholar 

  5. Adiga SP, Jin C, Curtiss LA, Monteiro-Riviere NA, Narayan RJ (2009) Nanoporous membranes for medical and biological applications. Wiley Interdisc Rev Nanomed Nanobiotechnol 1:568–581

    Article  CAS  Google Scholar 

  6. Cormode DP, Naha PC, Fayad ZA (2014) Nanoparticle contrast agents for computed tomography: a focus on micelles. Contrast Media Mol Imaging 9:37–52

    Article  CAS  Google Scholar 

  7. Anderson CE et al (2017) Dual contrast-magnetic resonance fingerprinting (DC-MRF): a platform for simultaneous quantification of multiple MRI contrast agents. Sci Rep 7(8431)

    Google Scholar 

  8. Han HS et al (2015) Quantum dot/antibody conjugates for in vivo cytometric imaging in mice. Proc Natl Acad Sci 112:1350–1355

    Article  CAS  Google Scholar 

  9. Chude-Okonkwo UAK, Malekian R, Maharaj BT, Vasilakos AV (2017) Molecular communication and nanonetwork for targeted drug delivery: a survey. IEEE Commun Surv Tutorials 19:3046–3096

    Article  Google Scholar 

  10. Ingalls B (2013) Mathematical modelling in systems biology: an introduction. MIT Press

    Google Scholar 

  11. Chude-Okonkwo UAK, Malekian R, Maharaj BT (2015) Diffusion-controlled interface kinetics-inclusive system-theoretic propagation models for molecular communication systems. EURASIP J Adv Signal Process 89:1–23

    Google Scholar 

  12. Chude-Okonkwo UAK (2014) Diffusion-controlled enzyme-catalyzed molecular communication system for targeted drug delivery. In: 2014 IEEE global communications conference, Austin, Texas, pp 2826–2831

    Google Scholar 

  13. Wolfram S (1984) Cellular automata as models of complexity. Nature 311:419–424

    Article  Google Scholar 

  14. Ditlevsen S, Samson A (2013) Introduction to stochastic models in biology. In: Bachar M, Batzel JJ, Ditlevsen S (eds) Stochastic biomathematical models. Springer, pp 3–35

    Google Scholar 

  15. Meng TC, Somani S, Dhar P (2004) Modeling and simulation of biological systems with stochasticity. Silico Biol 4:293–309

    CAS  Google Scholar 

  16. Rangamani P, Iyengar R (2008) Modelling cellular signalling systems. Essays Biochem 45:83–94

    Article  CAS  Google Scholar 

  17. Resat H, Costa MN, Shankaran H (2011) Spatial aspects in biological system simulations. Method Enzymol Elsevier 487:485–511

    Article  CAS  Google Scholar 

  18. Elias J, Jarray A, Salazar J, Karmouch A, Mehaoua A (2013) A reliable design of wireless body area networks. In: IEEE global communications conference, pp 2742–2748

    Google Scholar 

  19. Aguirre E et al (2016) Design and performance analysis of wireless body area networks in complex indoor e-Health hospital environments for patient remote monitoring. Int J Distrib Sens Netw 12(9):1–17

    Article  Google Scholar 

  20. Fatima M, Kiani AK, Baig A (2013) Medical body area network, architectural design and challenges: a survey. In: Shaikh FK, Chowdhry BS, Ammari HM, Uqaili MA, Shah A (eds) Wireless sensor networks for developing countries. Springer, pp 60–72

    Google Scholar 

  21. Yonzon CR, Stuart DA, Zhang X, McFarland AD, Haynes CL, Van Duyne RP (2005) Towards advanced chemical and biological nanosensors—an overview. Talanta 67:438–448

    Article  CAS  Google Scholar 

  22. Felicetti L, Femminella M, Reali G, Liò P (2014) A molecular communication system in blood vessels for tumor detection. In: Proceedings of the first annual international conference on nanoscale computing and communication, p 21

    Google Scholar 

  23. Nakano T, Kobayashi S, Suda T, Okaie Y, Hiraoka Y, Haraguchi T (2014) Externally controllable molecular communication. IEEE J Sel Areas Commun 32:2417–2431

    Article  Google Scholar 

  24. Chude-Okonkwo UAK, Malekian R, Maharaj BT (2016) Biologically inspired bio-cyber interface architecture and model for internet of bio-nanothings applications. IEEE Trans Commun 64:3444–3455

    Article  Google Scholar 

  25. Zhang X, Sun C, Fang N (2004) Manufacturing at nanoscale: top-down, bottom-up and system engineering. J Nanopart Res 6:125–130

    Article  Google Scholar 

  26. Akyildiz IF, Brunetti F, Blázquez C (2008) Nanonetworks: a new communication paradigm. Comput Netw 52:2260–2279

    Article  Google Scholar 

  27. Meyer RA, Meyer RS, Green JJ (2015) An automated multidimensional thin film stretching device for the generation of anisotropic polymeric micro- and nanoparticles. J Biomed Mater Res Part A 103:2747–2757

    Article  CAS  Google Scholar 

  28. Gong G et al (2011) Fabrication of a nanocarrier system through self-assembly of plasma protein and its tumor targeting. Nanotechnology 22(9):1–9

    CAS  Google Scholar 

  29. Chu KS et al (2014) Particle replication in nonwetting templates nanoparticles with tumor selective alkyl silyl ether docetaxel prodrug reduces toxicity. Nano Lett 14:1472–1476

    Article  CAS  Google Scholar 

  30. Chi NT, Triet NM, Chien DM (2009) Preparation of drug nanoparticles by emulsion evaporation method. J Phys Conf Ser 187(1):1–5

    Google Scholar 

  31. Shah N, Sharma OP, Mehta T, Amin A (2016) Design of experiment approach for formulating multi-unit colon-targeted drug delivery system: in vitro and in vivo studies. Drug Dev Ind Pharm 42:825–835

    Article  CAS  Google Scholar 

  32. Delalat B et al (2015) Targeted drug delivery using genetically engineered diatom biosilica. Nat Commun 6(8791):1–11

    Google Scholar 

  33. Robertson D, Williams GH (2009) Clinical and translational science: principles of human research. Academic Press, United Kingdom

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Malekian .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chude-Okonkwo, U., Malekian, R., Maharaj, B.T. (2019). Classical Framework for Case-Driven Design of Advanced Targeted Nanomedical Solution. In: Advanced Targeted Nanomedicine. Nanomedicine and Nanotoxicology. Springer, Cham. https://doi.org/10.1007/978-3-030-11003-1_5

Download citation

Publish with us

Policies and ethics