Skip to main content

Nanosystems and Devices for Advanced Targeted Nanomedical Applications

  • Chapter
  • First Online:
Advanced Targeted Nanomedicine

Part of the book series: Nanomedicine and Nanotoxicology ((NANOMED))

Abstract

In the previous chapters, we discussed the relationship between communication engineering and medicine/healthcare delivery. We have espoused the view that communication between cells is vital to their health and to the effective working of the human body. Hence, breakdown in communication results in diseases, and to treat the diseases implies normalising the communication breakdown among the implicated cells, tissues and organs. The application of the ATN solutions is proposed to normalise the breakdown in communication within the cellular/organ network, and hence treat diseases. The ATN solution is a very complex one that involves the assembly and operation of materials, techniques, components, devices and networks whose dimensions range from the nanoscale to the macroscale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wiederrecht G (2010) Handbook of nanofabrication. Academic Press

    Google Scholar 

  2. Nishimura Y, Ishii J, Ogino C, Kondo A (2014) Genetic engineering of bio-nanoparticles for drug delivery: a review. J Biomed Nanotechnol 10:2063–2085

    Article  CAS  Google Scholar 

  3. Yoo JW, Irvine DJ, Discher DE, Mitragotri S (2011) Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat Rev Drug Discov 10:521–535

    Article  CAS  Google Scholar 

  4. Tan S, Wu T, Zhang D, Zhang Z (2015) Cell or cell membrane-based drug delivery systems. Theranostics 5:863

    Article  CAS  Google Scholar 

  5. Lockney D, Franzen S, Lommel S (2011) Viruses as nanomaterials for drug delivery. Biomed Nanotechnol Methods Protocols, 207–221

    Google Scholar 

  6. Esfandiari N, Arzanani MK, Soleimani M, Kohi-Habibi M, Svendsen WE (2016) A new application of plant virus nanoparticles as drug delivery in breast cancer. Tumor Biol 37:1229–1236

    Article  CAS  Google Scholar 

  7. Steidler L (2004) Live genetically modified bacteria as drug delivery tools: at the doorstep of a new pharmacology? Exp Opin Biol Ther 4:439–441

    Article  CAS  Google Scholar 

  8. Yacoby I, Bar H, Benhar I (2007) Targeted drug-carrying bacteriophages as antibacterial nanomedicines. Antimicrob Agent Chemother 51:2156–2163

    Article  CAS  Google Scholar 

  9. Su Y, Xie Z, Kim GB, Dong C, Yang J (2015) Design strategies and applications of circulating cell-mediated drug delivery systems. ACS Biomater Sci Eng 1:201–217

    Article  CAS  Google Scholar 

  10. Batrakova EV, Gendelman HE, Kabanov AV (2011) Cell-mediated drug delivery. Exp Opin Drug Deliv 8:415–433

    Article  CAS  Google Scholar 

  11. Boehm F (2016) Nanomedical device and systems design: challenges, possibilities, visions. CRC Press

    Google Scholar 

  12. Chude-Okonkwo UA, Malekian R, Maharaj BT, Vasilakos AV (2017) Molecular communication and nanonetwork for targeted drug delivery: a survey. IEEE Commun Surv Tutor 19:3046–3096

    Article  Google Scholar 

  13. Rogers K (2012) The kidneys and the renal system. Britannica Educ Publ, New York

    Google Scholar 

  14. Milici AJ, L’Hernault N, Palade GE (1985) Surface densities of diaphragmed fenestrae and transendothelial channels in different murine capillary beds. Circ Res 56:709–717

    Article  CAS  Google Scholar 

  15. Alexis F, Pridgen E, Molnar LK, Farokhzad OC (2008) Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 5:505–515

    Article  CAS  Google Scholar 

  16. Blanco E, Shen H, Ferrari M (2015) Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33:941–951

    Article  CAS  Google Scholar 

  17. Desai N (2012) Challenges in development of nanoparticle-based therapeutics. AAPS J 14:282–295

    Article  CAS  Google Scholar 

  18. Longmire M, Choyke PL, Kobayashi H (2008) Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine 3(5):703–717

    Article  CAS  Google Scholar 

  19. Wiig H, Swartz MA (2012) Interstitial fluid and lymph formation and transport: physiological regulation and roles in inflammation and cancer. Physiol Rev 92:1005–1060

    Article  CAS  Google Scholar 

  20. Elsaesser A, Howard CV (2012) Toxicology of nanoparticles. Adv Drug Deliv Rev 64:129–137

    Article  CAS  Google Scholar 

  21. Kagan VE, Bayir H, Shvedova AA (2005) Nanomedicine and nanotoxicology: two sides of the same coin. Nanomed Nanotechnol Biol Med 1:313–316

    Article  CAS  Google Scholar 

  22. Szoka F Jr, Papahadjopoulos D (1980) Comparative properties and methods of preparation of lipid vesicles (liposomes). Ann Rev Biophys Bioeng 9:467–508

    Article  CAS  Google Scholar 

  23. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, et al (2013) Liposome: classification, preparation, and applications. Nanoscale Res Lett 8:102

    Article  Google Scholar 

  24. Patil YP, Jadhav S (2014) Novel methods for liposome preparation. Chem Phys Lipids 177:8–18

    Article  CAS  Google Scholar 

  25. Lasic DD (1998) Novel applications of liposomes. Tr Biotechnol 16:307–321

    Article  CAS  Google Scholar 

  26. Shi J, He J, Deng R, Wei Y, Long F, Cheng Y et al (2017) Multilevel modulation scheme using the overlapping of two light sources for visible light communication with mobile phone camera. Opt Express 25:15905–15912

    Article  Google Scholar 

  27. Kiel C, Yus E, Serrano L (2010) Engineering signal transduction pathways. Cell 140:33–47

    Article  CAS  Google Scholar 

  28. Fakhrullin RF, Zamaleeva AI, Minullina RT, Konnova SA, Paunov VN (2012) Cyborg cells: functionalisation of living cells with polymers and nanomaterials. Chem Soc Rev 41:4189–4206

    Article  CAS  Google Scholar 

  29. Basu S, Gerchman Y, Collins CH, Arnold FH, Weiss R (2005) A synthetic multicellular system for programmed pattern formation. Nature 434:1130–1134

    Article  CAS  Google Scholar 

  30. Anderson JC, Clarke EJ, Arkin AP, Voigt CA (2006) Environmentally controlled invasion of cancer cells by engineered bacteria. J Mol Biol 355:619–627

    Article  CAS  Google Scholar 

  31. Wegmann U, Carvalho AL, Stocks M, Carding SR (2017) Use of genetically modified bacteria for drug delivery in humans: Revisiting the safety aspect. Sci Reports 7:2294

    Google Scholar 

  32. Hess B (2000) Periodic patterns in biology. Naturwissenschaften 87:199–211

    Article  CAS  Google Scholar 

  33. Polikanov YS, Blaha GM, Steitz TA (2012) How hibernation factors RMF, HPF, and YfiA turn off protein synthesis. Science 336:915–918

    Article  CAS  Google Scholar 

  34. Kuran MS, Yilmaz HB, Tugcu T, Özerman B (2010) Energy model for communication via diffusion in nanonetworks. Nano Commun Netw 1:86–95

    Article  Google Scholar 

  35. Chude-Okonkwo UA (2014) Diffusion-controlled enzyme-catalyzed molecular communication system for targeted drug delivery. In: 2014 IEEE Global Communications Conference, pp 2826–2831

    Google Scholar 

  36. Okonkwo UA, Malekian R, Maharaj BT (2016) Molecular communication model for targeted drug delivery in multiple disease sites with diversely expressed enzymes. IEEE Trans Nanobiosci 15(3):230–245

    Article  Google Scholar 

  37. Oberholzer T, Meyer E, Amato I, Lustig A, Monnard PA (1999) Enzymatic reactions in liposomes using the detergent-induced liposome loading method. Biochimica et Biophysica Acta (BBA)—Biomembr 1416:57–68

    Article  CAS  Google Scholar 

  38. Matsumoto R, Kakuta M, Sugiyama T, Goto Y, Sakai H, Tokita Y et al (2010) A liposome-based energy conversion system for accelerating the multi-enzyme reactions. Phys Chem Chem Phys 12:13904–13906

    Article  CAS  Google Scholar 

  39. Douglas SM, Bachelet I, Church GM (2012) A logic-gated nanorobot for targeted transport of molecular payloads. Science 335:831–834

    Article  CAS  Google Scholar 

  40. Li S, Jiang Q, Liu S, Zhang Y, Tian Y, Song C, et al (2018) A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat Biotechnol 36:258

    Article  CAS  Google Scholar 

  41. Cavalcanti A, Shirinzadeh B, Fukuda T, Ikeda S (2009) Nanorobot for brain aneurysm. Int J Robot Res 28:558–570

    Article  Google Scholar 

  42. Dollard MA, Billard P (2003) Whole-cell bacterial sensors for the monitoring of phosphate bioavailability. J Microbiol Methods 55:221–229

    Article  CAS  Google Scholar 

  43. Yeo D, Wiraja C, Chuah YJ, Gao Y, Xu C (2015) A nanoparticle-based sensor platform for cell tracking and status/function assessment. Sci Reports 5:14768

    Article  CAS  Google Scholar 

  44. Eckert MA, Vu PQ, Zhang K, Kang D, Ali MM, Xu C et al (2013) Novel molecular and nanosensors for in vivo sensing. Theranostics 3(8):583–594

    Article  Google Scholar 

  45. Monson E, Brasuel M, Philbert M, Kopelman R (2003) PEBBLE nanosensors for in vitro bioanalysis. Biomed Photonics Handb 9

    Google Scholar 

  46. Gu MB, Kim HS (2014) Biosensors based on aptamers and enzymes, vol 140. Springer

    Google Scholar 

  47. Roberts JR, Park J, Helton K, Wisniewski N, McShane MJ (2012) Biofouling of polymer hydrogel materials and its effect on diffusion and enzyme-based luminescent glucose sensor functional characteristics. J Diabetes Sci Technol 6:1267–1275

    Article  Google Scholar 

  48. Kuscu M, Akan OB (2016) On the physical design of molecular communication receiver based on nanoscale biosensors. IEEE Sens J 16:2228–2243

    Article  Google Scholar 

  49. Feringa BL, Browne WR (2011) Molecular switches. Wiley

    Google Scholar 

  50. Li H, Qu DH (2015) Recent advances in new-type molecular switches. Sci China Chem 58:916–921

    Article  CAS  Google Scholar 

  51. Sivan S, Tuchman S, Lotan N (2003) A biochemical logic gate using an enzyme and its inhibitor. Part II: the logic gate. Biosystems 70:21–33

    Article  CAS  Google Scholar 

  52. Katz E, Privman V, Wang J (2010) Towards biosensing strategies based on biochemical logic systems. In: Fourth international conference on quantum, nano and micro technologies, ICQNM’10, pp 1–9

    Google Scholar 

  53. Privman V, Katz E (2015) Can bio-inspired information processing steps be realized as synthetic biochemical processes? Physica Status Solidi (a) 212:219–228

    Article  CAS  Google Scholar 

  54. Stein V, Alexandrov K (2015) Synthetic protein switches: design principles and applications. Trends Biotechnol 33:101–110

    Article  CAS  Google Scholar 

  55. Hansen CH, Yang D, Koussa MA, Wong WP (2017) Nanoswitch-linked immunosorbent assay (NLISA) for fast, sensitive, and specific protein detection. Proc Nat Acad Sci 114:10367–10372

    Article  CAS  Google Scholar 

  56. Dasgupta T, Croll DH, Owen JA, Vander Heiden MG, Locasale JW, Alon U et al (2014) A fundamental trade-off in covalent switching and its circumvention by enzyme bifunctionality in glucose homeostasis. J Biol Chem 289:13010–13025

    Article  CAS  Google Scholar 

  57. Ostermeier M (2005) Engineering allosteric protein switches by domain insertion. Protein Eng Design Sel 18:359–364

    Article  CAS  Google Scholar 

  58. Pohanka M, Skládal P (2008) Electrochemical biosensors: principles and applications. J Appl Biomed 6(2):57–64

    CAS  Google Scholar 

  59. Ullah S, Mohaisen M, Alnuem MA (2013) A review of IEEE 802.15. 6 MAC, PHY, and security specifications. Int J Distrib Sens Netw 9:950704

    Article  Google Scholar 

  60. Darwish A, Hassanien AE (2011) Wearable and implantable wireless sensor network solutions for healthcare monitoring. Sensors 11:5561–5595

    Article  Google Scholar 

  61. Zhen B, Li HB, Kohno R (2007) IEEE body area networks for medical applications. In: 4th international symposium on wireless communication systems ISWCS, pp 327-331

    Google Scholar 

  62. Negra R, Jemili I, Belghith A (2016) Wireless body area networks: applications and technologies. Procedia Comput Sci 83:1274–1281

    Article  Google Scholar 

  63. Smith DB, Hanlen LW (2015) Channel modeling for wireless body area networks. In: Ultra-low-power short-range radios. Springer, pp 25–55

    Google Scholar 

  64. Balouchestani M, Raahemifar K, Krishnan S (2013) New channel model for wireless body area network with compressed sensing theory. IET Wireless Sensor Syst 3:85–92

    Article  Google Scholar 

  65. Tsolaki A, Kazis D, Kompatsiaris I, Kosmidou V, Tsolaki M (2014) Electroencephalogram and Alzheimer’s disease: clinical and research approaches. Int J Alzheimer’s Disease 2014:349249

    Article  Google Scholar 

  66. Natarajan A, Parate A, Gaiser E, Angarita G, Malison R, Marlin B, et al (2013) Detecting cocaine use with wearable electrocardiogram sensors. In: Proceedings of the 2013 ACM international joint conference on Pervasive and Ubiquitous computing, pp 123–132

    Google Scholar 

  67. Giggins OM, Persson UM, Caulfield B (2013) Biofeedback in rehabilitation. J Neuroeng Rehabil 10:60

    Article  Google Scholar 

  68. De Freitas GS, Mituuti CT, Furkim AM, Busanello-Stella AR, Stefani FM, Arone MMAD et al (2016) Electromyography biofeedback in the treatment of neurogenic orofacial disorders: systematic review of the literature. Audiol Commun Res 21

    Google Scholar 

  69. Iversen NK, Frische S, Thomsen K, Laustsen C, Pedersen M, Hansen PB et al (2013) Superparamagnetic iron oxide polyacrylic acid coated γ-Fe2O3 nanoparticles do not affect kidney function but cause acute effect on the cardiovascular function in healthy mice. Toxicol Appl Pharmacol 266:276–288

    Article  CAS  Google Scholar 

  70. Heikal L, Starr A, Martin GP, Nandi M, Dailey LA (2016) In vivo pharmacological activity and biodistribution of S-nitrosophytochelatins after intravenous and intranasal administration in mice. Nitric Oxide 59:1–9

    Article  CAS  Google Scholar 

  71. Lee H, Song C, Hong YS, Kim MS, Cho HR, Kang T, et al (2017) Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module. Sci Adv 3:e1601314

    Article  Google Scholar 

  72. Wu JZ, Williams GR, Li HY, Wang D, Wu H, Li SD, et al (2017) Glucose-and temperature-sensitive nanoparticles for insulin delivery. Int J Nanomed 12:4037

    Article  Google Scholar 

  73. Rehman A, Setter SM, Vue MH (2011) Drug-induced glucose alterations part 2: drug-induced hyperglycemia. Diabetes Spectrum 24:234–238

    Article  Google Scholar 

  74. Blackburn DF, Wilson TW (2006) Antihypertensive medications and blood sugar: theories and implications. Can J Cardiol 22:229–233

    Article  CAS  Google Scholar 

  75. Chude-Okonkwo UA, Malekian R, Maharaj BT (2016) Biologically inspired bio-cyber interface architecture and model for Internet of Bio-NanoThings applications. IEEE Trans Commun 64:3444–3455

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Malekian .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chude-Okonkwo, U., Malekian, R., Maharaj, B.T. (2019). Nanosystems and Devices for Advanced Targeted Nanomedical Applications. In: Advanced Targeted Nanomedicine. Nanomedicine and Nanotoxicology. Springer, Cham. https://doi.org/10.1007/978-3-030-11003-1_3

Download citation

Publish with us

Policies and ethics