Skip to main content

Communication Between Living and Non-living Systems: The Basis for Advanced Targeted Nanomedicine

  • Chapter
  • First Online:
Advanced Targeted Nanomedicine

Part of the book series: Nanomedicine and Nanotoxicology ((NANOMED))

Abstract

Every system known to man can be categorised as either a living system or a non-living system. There are many features and factors which differentiate the categories. Living systems are distinguishable from non-living systems by their ability to maintain stable, ordered states far from thermodynamic equilibrium (PLoS ONE 6:e22085, 2011 [1]). For the living systems to maintain the ordered nonequilibrium states, they continuously exchange information/entropy with their environments, grow and reproduce. Examples of living systems include humans, animals, plants and cells. On the other hand, non-living systems, if isolated or placed in a uniform environment, usually cease all motion very quickly such that no macroscopically observable events occur, thereby maintaining permanent equilibrium. Examples include all inanimate objects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Frieden BR, Gatenby RA (2011) Information dynamics in living systems: prokaryotes, eukaryotes, and cancer. PLoS ONE 6:e22085

    Article  Google Scholar 

  2. Polikanov YS, Blaha GM, Steitz TA (2012) How hibernation factors RMF, HPF, and YfiA turn off protein synthesis. Science 336:915–918

    Article  CAS  Google Scholar 

  3. Von Bodman SB, Willey JM, Diggle SP (2008) Cell-cell communication in bacteria: united we stand. J Bacteriol 190:4377–4391

    Article  Google Scholar 

  4. Ehrlich HP (2013) A snapshot of direct cell–cell communications in wound healing and scarring. Adv Wound Care 2:113–121

    Article  Google Scholar 

  5. Perbal B (2003) Communication is the key. Cell Commun Signal 1(3):3–7

    Article  Google Scholar 

  6. Persinger MA (2014) Infrasound, human health, and adaptation: an integrative overview of recondite hazards in a complex environment. Nat Hazards 70:501–525

    Article  Google Scholar 

  7. Carovac A, Smajlovic F, Junuzovic D (2011) Application of ultrasound in medicine. Acta Informatica Medica 19:168–171

    Article  Google Scholar 

  8. Novelline RA, Squire LF (2004) Squire’s fundamentals of radiology. La Editorial UPR

    Google Scholar 

  9. Sarvazyan AP, Urban MW, Greenleaf JF (2013) Acoustic waves in medical imaging and diagnostics. Ultrasound Med Biol 39:1133–1146

    Article  Google Scholar 

  10. Jiang W, Wright MW (2016) Indoor wireless communication using airborne ultrasound and OFDM methods. IEEE International Ultrasonics Symposium, pp 1–4

    Google Scholar 

  11. Davilis Y, Kalis A, Ifantis A (2010) On the use of ultrasonic waves as a communications medium in biosensor networks. IEEE Trans Inf Tech Biomed 14:650–656

    Article  Google Scholar 

  12. Zhou Q, Zheng J, Onishi S, Crommie M, Zettl AK (2015) Graphene electrostatic microphone and ultrasonic radio. Proc Natl Acad Sci 112:8942–8946

    Article  CAS  Google Scholar 

  13. Wang W, Liu J, Xie G, Wen L, Zhang J (2017) A bio-inspired electrocommunication system for small underwater robots. Bioinspiration Biomimetics 12:1–18

    Google Scholar 

  14. Goodwin FE (1970) A review of operational laser communication systems. Proc IEEE 58:1746–1752

    Article  Google Scholar 

  15. Palais JC (1988) Fiber optic communications. Prentice Hall, Englewood Cliffs

    Google Scholar 

  16. Carruthers JB (2003) Wireless infrared communications. Wiley, New York

    Google Scholar 

  17. Kim JJ, Lee Y, Kim HG, Choi KJ, Kweon HS, Park S et al (2012) Biologically inspired LED lens from cuticular nanostructures of firefly lantern. Proc Natl Acad Sci 109:18674–18678

    Article  CAS  Google Scholar 

  18. Holland LZ (2016) Tunicates. Curr Biol 26:R146–R152

    Article  CAS  Google Scholar 

  19. Valiadi M, Iglesias-Rodriguez MD (2014) Diversity of the luciferin binding protein gene in bioluminescent dinoflagellates: insights from a new gene in Noctiluca scintillans and sequences from Gonyaulacoid genera. J Eukaryot Microbiol 61:134–145

    Article  CAS  Google Scholar 

  20. Counsilman J, Ong P (1988) Responses of the luminescent land snail Dyakia (Quantula) striata to natural and artificial lights. J Ethol 6:1–8

    Article  Google Scholar 

  21. Weinstein P, Delean S, Wood T, Austin AD (2016) Bioluminescence in the ghost fungus Omphalotus nidiformis does not attract potential spore dispersing insects. IMA Fungus 7:229–234

    Article  Google Scholar 

  22. Manu M (2015) Bioluminescence–biological laser phenomenon initiated by eye Biophotonic tests. Acta Ophthalmologica 93:1

    Google Scholar 

  23. Bansal R (2004) Near-field magnetic communication. IEEE Antennas Propag Mag 46:114–115

    Article  Google Scholar 

  24. Nune SK, Gunda P, Thallapally PK, Lin YY, Laird Forrest M, Berkland CJ (2009) Nanoparticles for biomedical imaging. Expert Opin Drug Deliv 6:1175–1194

    Article  CAS  Google Scholar 

  25. Graham LM, Nguyen TM, Lee SB (2011) Nanodetoxification: emerging role of nanomaterials in drug intoxication treatment. Nanomedicine 6:921–928

    Article  CAS  Google Scholar 

  26. Sensenig R, Sapir Y, MacDonald C, Cohen S, Polyak B (2012) Magnetic nanoparticle-based approaches to locally target therapy and enhance tissue regeneration in vivo. Nanomedicine 7:1425–1442

    Article  CAS  Google Scholar 

  27. Chude-Okonkwo UA, Malekian R, Maharaj BT, Vasilakos AV (2017) Molecular communication and nanonetwork for targeted drug delivery: A survey. IEEE Commun Surv Tutorials 19:3046–3096

    Article  Google Scholar 

  28. Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD et al (1995) Molecular biology of the cell. Trends Biochem Sci 20:210

    Article  Google Scholar 

  29. Hirokawa N (1998) Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279:519–526

    Article  CAS  Google Scholar 

  30. Gosselin MC, Vermeeren G, Kuhn S, Kellerman V, Benkler S, Uusitupa TM et al (2011) Estimation formulas for the specific absorption rate in humans exposed to base-station antennas. IEEE Trans Electromagnetic Compatibility 53:909–922

    Article  Google Scholar 

  31. IEEE P1906.1—Recommended practice for nanoscale and molecular communication framework

    Google Scholar 

  32. Kaissling KE (2014) Pheromone reception in insects: the example of silk moths. In: Mucignat-Caretta C (ed) Neurobiology of chemical communication. CRC Press/Taylor & Francis, Boca Raton, FL, pp 99–146

    Chapter  Google Scholar 

  33. Bigiani A, Mucignat-Caretta C, Montani G, Tirindelli R (2005) Pheromone reception in mammals. Reviews of Physiology. Biochemistry and Pharmacology, Springer, New York, pp 1–35

    Google Scholar 

  34. Kirman JH (1973) Tactile communication of speech: a review and an analysis. Psychol Bull 80:54

    Article  CAS  Google Scholar 

  35. Coye C, Ouattara K, Zuberbühler K, Lemasson A (2015) Suffixation influences receivers’ behaviour in non-human primates. Proc R Soc B 282:20150265

    Article  Google Scholar 

  36. Yorzinski JL, Patricelli GL, Bykau S, Platt ML (2017) Selective attention in peacocks during assessment of rival males. J Exp Biol 220:1146–1153

    Article  Google Scholar 

  37. Ueda H, Kikuta Y, Matsuda K (2012) Plant communication: mediated by individual or blended VOCs? Plant Signal Behav 7:222–226

    Article  CAS  Google Scholar 

  38. Vickers CE, Gershenzon J, Lerdau MT, Loreto F (2009) A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nat Chem Biol 5:283

    Article  CAS  Google Scholar 

  39. Witzany G (2006) Plant communication from biosemiotic perspective: differences in abiotic and biotic signal perception determine content arrangement of response behavior. Context determines meaning of meta-, inter- and intraorganismic plant signaling. Plant Signal Behav 1:169–178

    Article  Google Scholar 

  40. Jung SC, Martinez-Medina A, Lopez-Raez JA, Pozo MJ (2012) Mycorrhiza-induced resistance and priming of plant defenses. J Chem Ecol 38:651–664

    Article  CAS  Google Scholar 

  41. Babikova Z, Gilbert L, Bruce TJ, Birkett M, Caulfield JC, Woodcock C et al (2013) Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack. Ecol Lett 16:835–843

    Article  Google Scholar 

  42. Perrimon N, Pitsouli C, Shilo BZ (2012) Signaling mechanisms controlling cell fate and embryonic patterning. Cold Spring Harb Perspect Biol 4(a005975):1–19

    Google Scholar 

  43. Kennedy L, Hodges K, Meng F, Alpini G, Francis H (2012) Histamine and histamine receptor regulation of gastrointestinal cancers. Transl Gastrointest Cancer 1:215

    CAS  Google Scholar 

  44. Veldhuis JD, Johnson ML (1988) A novel general biophysical model for simulating episodic endocrine gland signaling. Am J Phys–Endocrinol Metab 255:E749–E759

    Article  CAS  Google Scholar 

  45. Kleine B, Rossmanith WG (2016) Hormones and the endocrine system: Textbook of endocrinology. Springer, New York

    Book  Google Scholar 

  46. Lovinger DM (2008) Communication networks in the brain: neurons, receptors, neurotransmitters, and alcohol. Alcohol Res Health

    Google Scholar 

  47. Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Ann Rev Microbiol 55:165–199

    Article  CAS  Google Scholar 

  48. Erez Z, Steinberger-Levy I, Shamir M, Doron S, Stokar-Avihail A, Peleg Y et al (2017) Communication between viruses guides lysis–lysogeny decisions. Nature 541:488

    Article  CAS  Google Scholar 

  49. Tarkka MT, Sarniguet A, Frey-Klett P (2009) Inter-kingdom encounters: recent advances in molecular bacterium–fungus interactions. Curr Genet 55:233–243

    Article  CAS  Google Scholar 

  50. Christensen SA, Kolomiets MV (2011) The lipid language of plant–fungal interactions. Fungal Genet Biol 48:4–14

    Article  CAS  Google Scholar 

  51. Vavrinsky E, Telek P, Donoval M, Sladek L, Daricek M, Horinek F et al (2012) Sensor system for wireless bio-signal monitoring. Proced Chem 6:155–164

    Article  CAS  Google Scholar 

  52. Alam MM, Hamida EB (2014) Surveying wearable human assistive technology for life and safety critical applications: standards, challenges and opportunities. Sensors 14:9153–9209

    Article  Google Scholar 

  53. Jovanov E, Milenkovic A (2011) Body area networks for ubiquitous healthcare applications: opportunities and challenges. J Med Syst 35:1245–1254

    Article  Google Scholar 

  54. Gravina R, Alinia P, Ghasemzadeh H, Fortino G (2017) Multi-sensor fusion in body sensor networks: state-of-the-art and research challenges. Inf Fusion 35:68–80

    Article  Google Scholar 

  55. Arbia DB, Alam MM, Moullec YL, Hamida EB (2017) Communication challenges in on-body and body-to-body wearable wireless networks: A connectivity perspective. Technologies 5:43

    Article  Google Scholar 

  56. Seyedi M, Kibret B, Lai DT, Faulkner M (2013) A survey on intrabody communications for body area network applications. IEEE Trans Biomed Eng 60:2067–2079

    Article  Google Scholar 

  57. King BJ, Gilmore-Bykovskyi AL, Roiland RA, Polnaszek BE, Bowers BJ, Kind AJ (2013) The consequences of poor communication during transitions from hospital to skilled nursing facility: a qualitative study. J Am Geriatr Soc 61:1095–1102

    Article  Google Scholar 

  58. Tang D, Wang Y (2013) Cell cycle regulation of Golgi membrane dynamics. Trends Cell Biol 23:296–304

    Article  CAS  Google Scholar 

  59. Garden GA, La Spada AR (2012) Intercellular (mis) communication in neurodegenerative disease. Neuron 73:886–901

    Article  CAS  Google Scholar 

  60. Benninger RK, Piston DW (2014) Cellular communication and heterogeneity in pancreatic islet insulin secretion dynamics. Trends Endocrinol Metab 25:399–406

    Article  CAS  Google Scholar 

  61. Gómez-Suaga P, Bravo-San Pedro JM, González-Polo RA, Fuentes JM, Niso-Santano M (2018) ER–mitochondria signaling in Parkinson’s disease. Cell Death Dis 9:337

    Article  Google Scholar 

  62. Oktay MH, Lee YF, Harney A, Farrell D, Kuhn NZ, Morris SA et al (2015) Cell-to-cell communication in cancer: workshop report. NPJ Breast Cancer 1(15022):1–4

    Google Scholar 

  63. Humbert S, Saudou F (2005) Huntington’s disease: intracellular signaling pathways and neuronal death. J Soc Biol 199:247–251

    Article  CAS  Google Scholar 

  64. An J, Teoh JEM, Suntornnond R, Chua CK (2015) Design and 3D printing of scaffolds and tissues. Engineering 1:261–268

    Article  Google Scholar 

  65. Understanding chemotherapy: a guide for patients and families (2014) American Cancer Society, Atlanta, GA

    Google Scholar 

  66. Tinkle S, McNeil SE, Mühlebach S, Bawa R, Borchard G, Barenholz YC et al (2014) Nanomedicines: addressing the scientific and regulatory gap. Ann New York Acad Sci 1313:35–56

    Article  CAS  Google Scholar 

  67. Freitas RA (2006) Pharmacytes: An ideal vehicle for targeted drug delivery. J Nanosci Nanotechnol 6:2769–2775

    Article  CAS  Google Scholar 

  68. Kim SS, Rait A, Rubab F, Rao AK, Kiritsy MC, Pirollo KF et al (2014) The clinical potential of targeted nanomedicine: delivering to cancer stem-like cells. Mol Ther 22:278–291

    Article  CAS  Google Scholar 

  69. Debbage P (2009) Targeted drugs and nanomedicine: present and future. Curr Pharm Des 15:153–172

    Article  CAS  Google Scholar 

  70. Alex SM, Sharma CP (2013) Nanomedicine for gene therapy. Drug Deliv Transl Res 3:437–445

    Article  CAS  Google Scholar 

  71. Leijten J, Rouwkema J, Zhang YS, Nasajpour A, Dokmeci MR, Khademhosseini A (2016) Advancing tissue engineering: a tale of nano-, micro-, and macroscale integration. Small 12:2130–2145

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Malekian .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chude-Okonkwo, U., Malekian, R., Maharaj, B.T. (2019). Communication Between Living and Non-living Systems: The Basis for Advanced Targeted Nanomedicine. In: Advanced Targeted Nanomedicine. Nanomedicine and Nanotoxicology. Springer, Cham. https://doi.org/10.1007/978-3-030-11003-1_2

Download citation

Publish with us

Policies and ethics