Skip to main content

Imaging of Occult Spinal Dysraphism

  • Chapter
  • First Online:
  • 512 Accesses

Abstract

Imaging of occult spinal dysraphism (OSD) has evolved significantly over the recent years. The preferred imaging modality of choice for most, if not all, lesions is MRI. In this chapter, we review imaging of five clinically relevant OSDs: low conus medullaris, dermal sinus tract, lipomyelomeningocele, neurenteric cyst, and split cord malformation. In each section, we take the opportunity to explore related topics. In the first section, the topics of nondiagnostic imaging in tethered cord syndrome, incidental fatty fila, and evaluation of the sacral dimple are discussed. The next section, on dermal sinus tracts, includes a discussion about related diagnoses, including the newer diagnostic entity of limited dorsal myeloschisis (LMD) and the more historical meningocele manqué (MM). A third section discusses the imaging characteristics of lipomyelomeningocele, with a subsection on related diagnoses such as meningocele and myelocele. After discussions about neurenteric cysts (NECs) and split cord malformations (SCMs), we discuss future directions for imaging of OSD.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Morioka T, Hashiguchi K, Yoshida F, Nagata S, Miyagi Y, Mihara F, Sasaki T. Dynamic morphological changes in lumbosacral lipoma during the first months of life revealed by constructive interference in steady-state (CISS) MR imaging. Childs Nerv Syst. 2007;23(4):415–20.

    Article  PubMed  Google Scholar 

  2. Nakanishi K, Tanaka N, Kamei N, Nakamae T, Izumi B, Ohta R, Fujioka Y, Ochi M. Use of prone position magnetic resonance imaging for detecting the terminal filum in patients with occult tethered cord syndrome. J Neurosurg Spine. 2013;18(1):76–84.

    Article  PubMed  Google Scholar 

  3. Oz O, Ulas UH, Duz B, Yucel M, Odabasi Z. Electrophysiological findings in patients with adult tethered cord syndrome. Turk Neurosurg. 2010;20(1):16–20.

    PubMed  Google Scholar 

  4. Pinto FC, Fontes RB, Leonhardt Mde C, Amodio DT, Porro FF, Machado J. Anatomic study of the filum terminale and its correlations with the tethered cord syndrome. Neurosurgery. 2002;51(3):725–9. discussion 729–30

    Article  PubMed  Google Scholar 

  5. Yundt KD, Park TS, Kaufman BA. Normal diameter of filum terminale in children: in vivo measurement. Pediatr Neurosurg. 1997;27(5):257–9.

    Article  CAS  PubMed  Google Scholar 

  6. Perlitz Y, Izhaki I, Ben-Ami M. Sonographic evaluation of the fetal conus medullaris at 20 to 24 weeks’ gestation. Prenat Diagn. 2010;30(9):862–4.

    Article  PubMed  Google Scholar 

  7. Sahin F, Selçuki M, Ecin N, Zenciroğlu A, Unlü A, Yilmaz F, Maviş N, Saribaş S. Level of conus medullaris in term and preterm neonates. Arch Dis Child Fetal Neonatal Ed. 1997;77(1):F67–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Erkan K, Unal F, Kiris T. Terminal syringomyelia in association with the tethered cord syndrome. Neurosurgery. 1999;45(6):1351–9. discussion 1359–60

    Article  CAS  PubMed  Google Scholar 

  9. Iskandar BJ, Oakes WJ, McLaughlin C, Osumi AK, Tien RD. Terminal syringohydromyelia and occult spinal dysraphism. J Neurosurg. 1994;81(4):513–9.

    Article  CAS  PubMed  Google Scholar 

  10. Sigal R, Denys A, Halimi P, Shapeero L, Doyon D, Boudghène F. Ventriculus terminalis of the conus medullaris: MR imaging in four patients with congenital dilatation. AJNR Am J Neuroradiol. 1991;12(4):733–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Unsinn KM, Geley T, Freund MC, Gassner I. US of the spinal cord in newborns: spectrum of normal findings, variants, congenital anomalies, and acquired diseases. Radiographics. 2000;20(4):923–38.

    Article  CAS  PubMed  Google Scholar 

  12. Coleman LT, Zimmerman RA, Rorke LB. Ventriculus terminalis of the conus medullaris: MR findings in children. AJNR Am J Neuroradiol. 1995;16(7):1421–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Rodriguez A, Kuhn EN, Somasundaram A, Couture DE. Management of idiopathic pediatric syringohydromyelia. J Neurosurg Pediatr. 2015;16(4):452–7.

    Article  PubMed  Google Scholar 

  14. Warder DE, Oakes WJ. Tethered cord syndrome and the conus in a normal position. Neurosurgery. 1993;33(3):374–8.

    CAS  PubMed  Google Scholar 

  15. Fabiano AJ, Khan MF, Rozzelle CJ, Li V. Preoperative predictors for improvement after surgical untethering in occult tight filum terminale syndrome. Pediatr Neurosurg. 2009;45(4):256–61.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Selçuki M, Vatansever S, Inan S, Erdemli E, Bağdatoğlu C, Polat A. Is a filum terminale with a normal appearance really normal? Childs Nerv Syst. 2003;19(1):3–10.

    Article  PubMed  Google Scholar 

  17. Selçuki M, Coskun K. Management of tight filum terminale syndrome with special emphasis on normal level conus medullaris (NLCM). Surg Neurol. 1998;50(4):318–22.

    Article  PubMed  Google Scholar 

  18. Bao N, Chen ZH, Gu S, Chen QM, Jin HM, Shi CR. Tight filum terminale syndrome in children: analysis based on positioning of the conus and absence or presence of lumbosacral lipoma. Childs Nerv Syst. 2007;23(10):1129–34.

    Article  PubMed  Google Scholar 

  19. Vernet O, O’Gorman AM, Farmer JP, McPhillips M, Montes JL. Use of the prone position in the MRI evaluation of spinal cord retethering. Pediatr Neurosurg. 1996;25(6):286–94.

    Article  CAS  PubMed  Google Scholar 

  20. Brown E, Matthes JC, Bazan C 3rd, Jinkins JR. Prevalence of incidental intraspinal lipoma of the lumbosacral spine as determined by MRI. Spine (Phila Pa 1976). 1994;19(7):833–6.

    Article  CAS  Google Scholar 

  21. Al-Omari MH, Eloqayli HM, Qudseih HM, Al-Shinag MK. Isolated lipoma of filum terminale in adults: MRI findings and clinical correlation. J Med Imaging Radiat Oncol. 2011;55(3):286–90.

    Article  PubMed  Google Scholar 

  22. Al-Habib AF, Al-Rashidi SM, Al-Badr FB, Hassan HH. Radiological predictors of neurological compromise in adults with filum terminale lipoma. Neurosciences (Riyadh). 2013;18(2):180–2.

    Google Scholar 

  23. Albert GW. Spine ultrasounds should not be routinely performed for patients with simple sacral dimples. Acta Paediatr. 2016;105(8):890–4.

    Article  PubMed  Google Scholar 

  24. Ben-Sira L, Ponger P, Miller E, Beni-Adani L, Constantini S. Low-risk lumbar skin stigmata in infants: the role of ultrasound screening. J Pediatr. 2009;155(6):864–9.

    Article  PubMed  Google Scholar 

  25. Chern JJ, Kirkman JL, Shannon CN, Tubbs RS, Stone JD, Royal SA, Oakes WJ, Rozzelle CJ, Wellons JC. Use of lumbar ultrasonography to detect occult spinal dysraphism. J Neurosurg Pediatr. 2012;9(3):274–9.

    Article  PubMed  Google Scholar 

  26. Kucera JN, Coley I, O’Hara S, Kosnik EJ, Coley BD. The simple sacral dimple: diagnostic yield of ultrasound in neonates. Pediatr Radiol. 2015;45(2):211–6.

    Article  PubMed  Google Scholar 

  27. McGovern M, Mulligan S, Carney O, Wall D, Moylett E. Ultrasound investigation of sacral dimples and other stigmata of spinal dysraphism. Arch Dis Child. 2013;98(10):784–6.

    Article  PubMed  Google Scholar 

  28. Bulsara KR, Zomorodi AR, Enterline DS, George TM. The value of magnetic resonance imaging in the evaluation of fatty filum terminale. Neurosurgery. 2004;54(2):375–9. discussion 379–80

    Article  PubMed  Google Scholar 

  29. Harada A, Nishiyama K, Yoshimura J, Sano M, Fujii Y. Intraspinal lesions associated with sacrococcygeal dimples. J Neurosurg Pediatr. 2014;14(1):81–6.

    Article  PubMed  Google Scholar 

  30. O’Neill BR, Gallegos D, Herron A, Palmer C, Stence NV, Hankinson TC, Corbett Wilkinson C, Handler MH. Use of magnetic resonance imaging to detect occult spinal dysraphism in infants. J Neurosurg Pediatr. 2017;19(2):217–26.

    Article  PubMed  Google Scholar 

  31. Tamura G, Morota N, Ihara S. Impact of magnetic resonance imaging and urodynamic studies on the management of sacrococcygeal dimples. J Neurosurg Pediatr. 2017;20(3):289–97.

    Article  PubMed  Google Scholar 

  32. Barkovich AJ, Edwards MS, Cogen PH. MR evaluation of spinal dermal sinus tracts in children. AJNR Am J Neuroradiol. 1991;12(1):123–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Pang D. Sacral agenesis and caudal spinal cord malformations. Neurosurgery. 1993;32(5):755–78. discussion 778–9

    Article  CAS  PubMed  Google Scholar 

  34. Pang D, Zovickian J, Oviedo A, Moes GS. Limited dorsal myeloschisis: a distinctive clinicopathological entity. Neurosurgery. 2010;67(6):1555–79. discussion 1579–80

    Article  PubMed  Google Scholar 

  35. McComb JG. A practical clinical classification of spinal neural tube defects. Childs Nerv Syst. 2015;31(10):1641–57.

    Article  PubMed  Google Scholar 

  36. Lee SM, Cheon JE, Choi YH, Kim IO, Kim WS, Cho HH, Lee JY, Wang KC. Limited dorsal myeloschisis and congenital dermal sinus: comparison of clinical and MR imaging features. AJNR Am J Neuroradiol. 2017;38(1):176–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Eibach S, Moes G, Zovickian J, Pang D. Limited dorsal myeloschisis associated with dermoid elements. Childs Nerv Syst. 2017;33(1):55–67.

    Article  PubMed  Google Scholar 

  38. Friszer S, Dhombres F, Morel B, Zerah M, Jouannic JM, Garel C. Limited dorsal myeloschisis: a diagnostic pitfall in the prenatal ultrasound of fetal dysraphism. Fetal Diagn Ther. 2017;41(2):136–44.

    Article  PubMed  Google Scholar 

  39. Russell NE, Chalouhi GE, Dirocco F, Zerah M, Ville Y. Not all large neural tube defects have a poor prognosis: a case of prenatally diagnosed limited dorsal myeloschisis. Ultrasound Obstet Gynecol. 2013;42(2):238–9.

    Article  CAS  PubMed  Google Scholar 

  40. Kaffenberger DA, Heinz ER, Oakes JW, Boyko O. Meningocele manqué: radiologic findings with clinical correlation. AJNR Am J Neuroradiol. 1992;13(4):1083–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Tubbs RS, McGirt MJ, Warder DE, Oakes WJ. Neurological presentation and long-term outcome following operative intervention in patients with meningocele manqué. Br J Neurosurg. 2003;17(3):230–3.

    Article  CAS  PubMed  Google Scholar 

  42. Rajpal S, Salamat MS, Tubbs RS, Kelly DR, Oakes WJ, Iskandar BJ. Tethering tracts in spina bifida occulta: revisiting an established nomenclature. J Neurosurg Spine. 2007;7(3):315–22.

    Article  PubMed  Google Scholar 

  43. Felekis T, Korkontzelos I, Akrivis C, Tsirkas P, Zagaliki A. Prenatal diagnosis of lipomyelomeningocele by ultrasound and magnetic resonance imaging (MRI). Clin Exp Obstet Gynecol. 2015;42(5):711–3.

    Article  CAS  PubMed  Google Scholar 

  44. Segal LS, Czoch W, Hennrikus WL, Wade Shrader M, Kanev PM. The spectrum of musculoskeletal problems in lipomyelomeningocele. J Child Orthop. 2013;7(6):513–9.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Tubbs RS, Oakes WJ. Lipomyelomeningocele and arteriovenous malformation: case reports and a review of the literature. Childs Nerv Syst. 2006;22(6):628–31.

    Article  PubMed  Google Scholar 

  46. Lee JH, Chung CK, Choe G, Chi JG, Chang KH, Kim HJ. Combined anomaly of intramedullary arteriovenous malformation and lipomyelomeningocele. AJNR Am J Neuroradiol. 2000;21(3):595–600.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Weon YC, Chung JI, Roh HG, Eoh W, Byun HS. Combined spinal intramedullary arteriovenous malformation and lipomyelomeningocele. Neuroradiology. 2005;47(10):774–9.

    Article  CAS  PubMed  Google Scholar 

  48. Dhandapani S, Srinivasan A. Contiguous triple spinal dysraphism associated with Chiari malformation type II and hydrocephalus: an embryological conundrum between the unified theory of Pang and the unified theory of McLone. J Neurosurg Pediatr. 2016;17(1):103–6.

    Article  PubMed  Google Scholar 

  49. Murakami N, Morioka T, Ichiyama M, Nakamura R, Kawamura N. Lateral lipomyelomeningocele of the hemicord with split cord malformation type I revealed by 3D heavily T2-weighted MR imaging. Childs Nerv Syst. 2017;33(6):993–7.

    Article  PubMed  Google Scholar 

  50. Cai C, Shen C, Yang W, Zhang Q, Hu X. Intraspinal neurenteric cysts in children. Can J Neurol Sci. 2008;35(5):609–15.

    Article  PubMed  Google Scholar 

  51. Menezes AH, Traynelis VC. Spinal neurenteric cysts in the magnetic resonance imaging era. Neurosurgery. 2006;58(1):97–105. discussion 97–105

    Article  PubMed  Google Scholar 

  52. de Oliveira RS, Cinalli G, Roujeau T, Sainte-Rose C, Pierre-Kahn A, Zerah M. Neurenteric cysts in children: 16 consecutive cases and review of the literature. J Neurosurg. 2005;103(6 Suppl):512–23.

    PubMed  Google Scholar 

  53. Al-Ahmed IH, Boughamoura M, Dirks P, Kulkarni AV, Rutka JT, Drake JM. Neurosurgical management of neurenteric cysts in children. J Neurosurg Pediatr. 2013;11(5):511–7.

    Article  PubMed  Google Scholar 

  54. Rauzzino MJ, Tubbs RS, Alexander E 3rd, Grabb PA, Oakes WJ. Spinal neurenteric cysts and their relation to more common aspects of occult spinal dysraphism. Neurosurg Focus. 2001;10(1):e2.

    Article  CAS  PubMed  Google Scholar 

  55. Brooks BS, Duvall ER, el Gammal T, Garcia JH, Gupta KL, Kapila A. Neuroimaging features of neurenteric cysts: analysis of nine cases and review of the literature. AJNR Am J Neuroradiol. 1993;14(3):735–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Jung HS, Park SM, Kim GU, Kim MK, Song KS. Unique imaging features of spinal neurenteric cyst. Clin Orthop Surg. 2015;7(4):515–8.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Muzumdar D, Bhatt Y, Sheth J. Intramedullary cervical neurenteric cyst mimicking an abscess. Pediatr Neurosurg. 2008;44(1):55–61.

    Article  CAS  PubMed  Google Scholar 

  58. Paolini S, Ciappetta P, Domenicucci M, Guiducci A. Intramedullary neurenteric cyst with a false mural nodule: case report. Neurosurgery. 2003;52(1):243–5. discussion 246

    PubMed  Google Scholar 

  59. Theret E, Litre CF, Lefebvre F, Eap C, Duntze J, Scherpereel B, Rousseaux P. Huge intramedullary neurenteric cyst with intrathoracic development in a 1 month-old boy: excision though the anterior approach. A case report and review of the literature. Acta Neurochir. 2010;152(3):481–3.

    Article  PubMed  Google Scholar 

  60. Garg K, Tandon V, Mahapatra AK. A unique case of split cord malformation type 1 with three different types of bony spurs. Asian J Neurosurg. 2017;12(2):305–8.

    PubMed  PubMed Central  Google Scholar 

  61. Liu W, Zheng D, Cui S, Zhang C, Liu Y, Jia Y, Shi T, Huang H, Hei B, Wang P. Characteristics of osseous septum of split cord malformation in patients presenting with scoliosis: a retrospective study of 48 cases. Pediatr Neurosurg. 2009;45(5):350–3.

    Article  PubMed  Google Scholar 

  62. Castillo M, Hankins L, Kramer L, Wilson BA. MR imaging of diplomyelia. Magn Reson Imaging. 1992;10(4):699–703.

    Article  CAS  PubMed  Google Scholar 

  63. Wei Q, Cai A, Wang X, Wang X, Xie L. The value of prenatal ultrasonographic diagnosis of diastematomyelia. J Ultrasound Med. 2017;36(6):1129–36.

    Article  PubMed  Google Scholar 

  64. Dean DC 3rd, Dirks H, O’Muircheartaigh J, Walker L, Jerskey BA, Lehman K, Han M, Waskiewicz N, Deoni SC. Pediatric neuroimaging using magnetic resonance imaging during non-sedated sleep. Pediatr Radiol. 2014;44(1):64–72.

    Article  PubMed  Google Scholar 

  65. Waitayawinyu P, Wankan P. The success of MRI without sedations in 6–15 years old pediatric patients after watching MRI introductory video. J Med Assoc Thail. 2016;99(5):596–601.

    Google Scholar 

  66. Theys C, Wouters J, Ghesquière P. Diffusion tensor imaging and resting-state functional MRI-scanning in 5- and 6-year-old children: training protocol and motion assessment. PLoS One. 2014;9(4):e94019.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Barnea-Goraly N, Weinzimer SA, Ruedy KJ, Mauras N, Beck RW, Marzelli MJ, Mazaika PK, Aye T, White NH, Tsalikian E, Fox L, Kollman C, Cheng P, Reiss AL, Diabetes Research in Children Network (DirecNet). High success rates of sedation-free brain MRI scanning in young children using simple subject preparation protocols with and without a commercial mock scanner – the Diabetes Research in Children Network (DirecNet) experience. Pediatr Radiol. 2014;44(2):181–6.

    Article  PubMed  Google Scholar 

  68. Vannest J, Rajagopal A, Cicchino ND, Franks-Henry J, Simpson SM, Lee G, Altaye M, Sroka C, Holland SK, CMIND Authorship Consortium. Factors determining success of awake and asleep magnetic resonance imaging scans in nonsedated children. Neuropediatrics. 2014;45(6):370–7.

    Article  PubMed  Google Scholar 

  69. Longo MG, Fagundes J, Huang S, Mehan W, Witzel T, Bhat H, Heberlein K, Rosen BR, Rosenthal D, Gonzalez RG, Schaefer PW, Rapalino O. Simultaneous multislice-based 5-minute lumbar spine MRI protocol: initial experience in a clinical setting. J Neuroimaging. 2017;27(5):442–6.

    Article  PubMed  Google Scholar 

  70. Rutman AM, Peterson DJ, Cohen WA, Mossa-Basha M. Diffusion tensor imaging of the spinal cord: clinical value, investigational applications, and technical limitations. Curr Probl Diagn Radiol. 2017;47:257–69. pii: S0363-0188(17)30142-1

    Article  PubMed  Google Scholar 

  71. Egloff A, Bulas D. Magnetic resonance imaging evaluation of fetal neural tube defects. Semin Ultrasound CT MR. 2015;36(6):487–500.

    Article  PubMed  Google Scholar 

  72. Nagaraj UD, Bierbrauer KS, Peiro JL, Kline-Fath BM. Differentiating closed versus open spinal dysraphisms on fetal MRI. AJR Am J Roentgenol. 2016;207(6):1316–23.

    Article  PubMed  Google Scholar 

  73. Williams F, Griffiths PD. Spinal neural tube defects on in utero MRI. Clin Radiol. 2013;68(12):e715–22.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd C. Hankinson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Greenan, K., Mirsky, D., Hankinson, T.C. (2019). Imaging of Occult Spinal Dysraphism. In: Tubbs, R., Oskouian, R., Blount, J., Oakes, W. (eds) Occult Spinal Dysraphism. Springer, Cham. https://doi.org/10.1007/978-3-030-10994-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10994-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10993-6

  • Online ISBN: 978-3-030-10994-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics