Skip to main content

Applications of Ionic Liquids and Deep Eutectic Solvents in Biorefinery-Biodiesel Production

  • Chapter
  • First Online:
Book cover Biorefinery

Abstract

Serious environmental concerns resulting from the use of fossil fuels have urged the scientific community to concentrate their efforts on finding alternative clean fuels and sustainable raw materials. Biofuels offer a reduction in fossil fuel usage instead, potentially reducing carbon emissions. In addition, some biofuels are considered a clean and biodegradable substitute produced via different processes depending on both the raw material and the products. Ionic liquids (ILs), a new class of solvents, have many favorable characteristics, e.g., low vapor pressure, non-flammability, ability to dissolve polar and nonpolar compounds, and thermal stability. In this chapter, the use of ILs and their analogues deep eutectic solvents (DESs) in the production and treatment of biodiesel is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

[BMIM][BF4]:

1 butyl-3-methyl imidazolium tetrafluoroborate

[BMIM][lnCl4]:

1-n-butyl-3-methylimidazolium tetrachloro-indate

[BMIM][N(CN)2]:

1-butyl-3-methyl imidazolium dicyanamide

[BMIM][PF6]:

1-butyl-3-methyl imidazolium hexafluorophosphate

[BMIM][Tf2N]:

1 butyl-3-methyl imidazolium bis(trifluoromethyl sulfonyl)imide

[BMIM]Im:

1-butyl-3-methylimidazolium imidazolide

[BMIM]OH:

1-butyl-3-methylimidazolium hydroxide

[BMMIM][Tf2N]:

1-butyl-2,3-dimethylimidazolium bis(trifluoromethyl sulfonyl)imide

[BSPy][CF3SO3]:

1-(4-sulfonic acid) butylpyridinium trifluoromethanesulfonate

[BSPy][HSO4]:

1-(4-sulfonic acid) butylpyridinium hydrogen sulfate

[C16MIM][Tf2N]:

1-hexadecyl-3-methylimidazolium bis(trifluoromethyl sulfonyl)imide

[C18MIM][Tf2N]:

1-octadecyl-3-methylimidazolium bis(trifluoromethyl sulfonyl)imide

[EMIM][OAc]:

1-ethyl-3-methylimidazolium acetate

[EMIM][PF6]:

1-ethyl-3-methyl imidazolium hexafluorophosphate

[EMIM][TfO]:

1-ethyl-3-methylimidazolium trifluoromethanesulfonate

[EMIM]BF4:

1-ethyl-3-methyl imidazolium tetrafluoroborate

[EMIM]Cl:

1-ethyl-3-methyl imidazolium chloride

[EMIM]DEP:

1-ethyl-3-methyl imidazolium diethylphosphate

[EMIM]EtOSO3:

1-ethyl-3-methyl imidazolium ethyl sulfate

[EMIM]SCN:

1-ethyl-3-methyl imidazolium thiocyanate

[HMIM][BF4]:

1-hexyl-3-methyl imidazolium tetrafluoroborate

[HMIM][N(CN)2]:

1-hexyl-3-methyl imidazolium dicyanamide

[HMIM][Tf2N]:

1-hexyl-3-methyl imidazolium bis(trifluoromethyl sulfonyl)imide

[HMMIM][Tf2N]:

1-hexyl-2,3-dimethylimidazolium bis(trifluoromethyl sulfonyl)imide

[NMP][CH3SO3]:

N-methyl-2-pyrrolidonium methyl sulfonate

[OMIM][PF6]:

1-methyl-3-octylimidazolium hexafluorophosphate

[OMIM][Tf2N]:

1-methyl-3-octylimidazolium bis(trifluoromethyl sulfonyl)imide

[OMMIM][Tf2N]:

1-octyl-2,3-dimethylimidazolium bis(trifluoromethyl sulfonyl)imide

[OMPY][BF4]:

1-octyl-3-methylpyridinium tetrafluoroborate

[SBP][HSO4]:

(2-(4-sulfobutyl) pyrazolium hydrogensulfate)

[SMIM][HSO4]:

1-(4-sulfonic acid) butyl-3-methylimidazolium hydrogen sulfate

[SO3H-(CH2)3-HIM][HSO4]:

1-(propyl-3-sulfonate) imidazolium hydrogen sulfate

[SPyr][HSO4]:

1-(4-sulfonic acid) butylpyridinium hydrogen sulfate

ACPO:

Acidic crude palm oil

BAO:

Bitter apple oil

ChAc:

Choline acetate

ChCl:

Choline chloride

DBT:

Dibenzothiophene

DESs:

Deep eutectic solvents

DMC:

Dimethyl carbonate

FAME:

Fatty acid methyl esters

Gly:

Glycerol

HBA:

Hydrogen bond acceptor

HBD:

Hydrogen bond donor

HPyrBr:

1-hexylpyridinium bromide

ILs:

Ionic liquids

IMC2OH:

Bis-(3-methyl-1-imidazole)-ethylene dihydroxide

IMC3OH:

Bis-(3-methyl-1-imidazole)-propylene dihydroxide

IMC4OH:

Bis-(3-methyl-1-imidazole)-butylene dihydroxide

IMC5OH:

Bis-(3-methyl-1-imidazole)-pentylene dihydroxide

IMC6OH:

Bis-(3-methyl-1-imidazole)-hexylene dihydroxide

KOH:

Potassium hydroxide

LGCPO:

Low-grade crude palm oil

MIL:

Magnetic ILs

MTBE:

Methyl tertiary butyl ether

MTPPB:

Methyl triphenyl phosphonium bromide

MW:

Microwaves

PTSA:

p-toluenesulfonic acid

scCO2:

Supercritical carbon dioxide

TFA:

Total fatty acid

References

  • Abbott AP, Boothby D, Capper G, Davies DL, Rasheed RK (2004) Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J Am Chem Soc 126(29):9142–9147

    Article  Google Scholar 

  • Abbott AP, Cullis PM, Gibson MJ, Harris RC, Raven E (2007) Extraction of glycerol from biodiesel into a eutectic based ionic liquid. Green Chem 9(8):868–872

    Article  Google Scholar 

  • Abu-Eishah SI (2011) Ionic liquids recycling for reuse. In: Ionic liquids-classes and properties. InTech, Rijeka

    Google Scholar 

  • Aghabarari B, Ghiaci M, Amini SG, Rahimi E, Martinez-Huerta M (2014) Esterification of fatty acids by new ionic liquids as acid catalysts. J Taiwan Inst Chem Eng 45(2):431–435

    Article  Google Scholar 

  • Andreani L, Rocha J (2012) Use of ionic liquids in biodiesel production: a review. Braz J Chem Eng 29(1):1–13

    Article  Google Scholar 

  • Atadashi I, Aroua M, Aziz AA (2011) Biodiesel separation and purification: a review. Renew Energy 36(2):437–443

    Article  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917

    Article  Google Scholar 

  • Chiappe C, Mezzetta A, Pomelli CS, Iaquaniello G, Gentile A, Masciocchi B (2016) Development of cost-effective biodiesel from microalgae using protic ionic liquids. Green Chem 18(18):4982–4989

    Article  Google Scholar 

  • Choi S-A, Oh Y-K, Jeong M-J, Kim SW, Lee J-S, Park J-Y (2014) Effects of ionic liquid mixtures on lipid extraction from Chlorella vulgaris. Renew Energy 65:169–174

    Article  Google Scholar 

  • D’Agostino C, Harris RC, Abbott AP, Gladden LF, Mantle MD (2011) Molecular motion and ion diffusion in choline chloride based deep eutectic solvents studied by 1 H pulsed field gradient NMR spectroscopy. Phys Chem Chem Phys 13(48):21383–21391

    Article  Google Scholar 

  • De Diego T, Manjón A, Lozano P, Iborra JL (2011) A recyclable enzymatic biodiesel production process in ionic liquids. Bioresour Technol 102(10):6336–6339

    Article  Google Scholar 

  • Dibble DC, Li C, Sun L, George A, Cheng A, Çetinkol ÖP, Benke P, Holmes BM, Singh S, Simmons BA (2011) A facile method for the recovery of ionic liquid and lignin from biomass pretreatment. Green Chem 13(11):3255–3264

    Article  Google Scholar 

  • Dorian JP, Franssen HT, Simbeck DR (2006) Global challenges in energy. Energy Policy 34(15):1984–1991

    Article  Google Scholar 

  • Durand E, Lecomte J, Baréa B, Piombo G, Dubreucq E, Villeneuve P (2012) Evaluation of deep eutectic solvents as new media for Candida antarctica B lipase catalyzed reactions. Process Biochem 47(12):2081–2089

    Article  Google Scholar 

  • Elsheikh YA (2014) Optimization of novel pyrazolium ionic liquid catalysts for transesterification of bitter apple oil. Process Saf Environ Prot 92(6):828–834

    Article  Google Scholar 

  • Fan M, Huang J, Yang J, Zhang P (2013) Biodiesel production by transesterification catalyzed by an efficient choline ionic liquid catalyst. Appl Energy 108:333–339

    Article  Google Scholar 

  • Gamba M, Lapis AA, Dupont J (2008) Supported ionic liquid enzymatic catalysis for the production of biodiesel. Adv Synth Catal 350(1):160–164

    Article  Google Scholar 

  • Gorke JT, Srienc F, Kazlauskas RJ (2008) Hydrolase-catalyzed biotransformations in deep eutectic solvents. Chem Commun (10):1235–1237

    Google Scholar 

  • Grimes SM, Kewcharoenwong P (2017) Dual-functionality ionic liquid mix for extraction and esterification of fatty acids as a step towards increasing the efficiency of conversion of waste cooking oils to biodiesel. J Chem Technol Biotechnol 92(8):2098–2105

    Article  Google Scholar 

  • Gu L, Huang W, Tang S, Tian S, Zhang X (2015) A novel deep eutectic solvent for biodiesel preparation using a homogeneous base catalyst. Chem Eng J 259:647–652

    Article  Google Scholar 

  • Ha SH, Lan MN, Lee SH, Hwang SM, Koo Y-M (2007) Lipase-catalyzed biodiesel production from soybean oil in ionic liquids. Enzym Microb Technol 41(4):480–483

    Article  Google Scholar 

  • Haerens K, Van Deuren S, Matthijs E, Van der Bruggen B (2010) Challenges for recycling ionic liquids by using pressure driven membrane processes. Green Chem 12(12):2182–2188

    Article  Google Scholar 

  • Hayyan M, Mjalli FS, Hashim MA, AlNashef IM (2010) A novel technique for separating glycerine from palm oil-based biodiesel using ionic liquids. Fuel Process Technol 91(1):116–120

    Article  Google Scholar 

  • Hayyan A, Hashim MA, Hayyan M, Mjalli FS, AlNashef IM (2013a) A novel ammonium based eutectic solvent for the treatment of free fatty acid and synthesis of biodiesel fuel. Ind Crop Prod 46:392–398

    Article  Google Scholar 

  • Hayyan A, Hashim MA, Mjalli FS, Hayyan M, AlNashef IM (2013b) A novel phosphonium-based deep eutectic catalyst for biodiesel production from industrial low grade crude palm oil. Chem Eng Sci 92:81–88

    Article  Google Scholar 

  • Hayyan A, Hashim MA, Hayyan M, Mjalli FS, AlNashef IM (2014) A new processing route for cleaner production of biodiesel fuel using a choline chloride based deep eutectic solvent. J Clean Prod 65:246–251

    Article  Google Scholar 

  • Hoekman SK (2009) Biofuels in the US–challenges and opportunities. Renew Energy 34(1):14–22

    Article  Google Scholar 

  • Huang W, Tang S, Zhao H, Tian S (2013) Activation of commercial CaO for biodiesel production from rapeseed oil using a novel deep eutectic solvent. Ind Eng Chem Res 52(34):11943–11947

    Article  Google Scholar 

  • Huang ZL, Wu BP, Wen Q, Yang TX, Yang Z (2014) Deep eutectic solvents can be viable enzyme activators and stabilizers. J Chem Technol Biotechnol 89(12):1975–1981

    Article  Google Scholar 

  • Idaham NF, Bustam Khalil MA, Kait CF (2014) Study on the Recovery of 1-butyl-3-methylimidazolium-based Ionic Liquids. Appl Mech Mater 625:144–147. Trans Tech Publications

    Article  Google Scholar 

  • Isahak W, Ismail M, Jahim JM, Salimon J, Yarmo M (2011) Transesterification of palm oil by using ionic liquids as a new potential catalyst. Trends Appl Sci Res 6(9):1055

    Article  Google Scholar 

  • Jain N, Kumar A, Chauhan S, Chauhan S (2005) Chemical and biochemical transformations in ionic liquids. Tetrahedron 61(5):1015–1060

    Article  Google Scholar 

  • Kanel JS (2003) Overview: industrial application of ionic liquids for liquid extraction. In: Chemical industry vision 2020 technology partnership workshop, New York

    Google Scholar 

  • Kaygusuz K (2009) Bioenergy as a clean and sustainable fuel. Energy Sources A 31(12):1069–1080

    Article  Google Scholar 

  • Kim Y-H, Choi Y-K, Park J, Lee S, Yang Y-H, Kim HJ, Park T-J, Kim YH, Lee SH (2012) Ionic liquid-mediated extraction of lipids from algal biomass. Bioresour Technol 109:312–315

    Article  Google Scholar 

  • Kuzmina O (2016) Methods of IL recovery and destruction. In: Application, purification, and recovery of ionic liquids. Elsevier, Oxford, pp 205–248

    Chapter  Google Scholar 

  • Leung DY, Wu X, Leung M (2010) A review on biodiesel production using catalyzed transesterification. Appl Energy 87(4):1083–1095

    Article  Google Scholar 

  • Li K-X, Chen L, Yan Z-C, Wang H-L (2010) Application of pyridinium ionic liquid as a recyclable catalyst for acid-catalyzed transesterification of Jatropha oil. Catal Lett 139(3–4):151–156

    Article  Google Scholar 

  • Liang J-h, Ren X-q, Wang J-t, Li Z-j (2010) Preparation of biodiesel by transesterification from cottonseed oil using the basic dication ionic liquids as catalysts. J Fuel Chem Technol 38(3):275–280

    Article  Google Scholar 

  • Lindberg D, de la Fuente Revenga M, Widersten M (2010) Deep eutectic solvents (DESs) are viable cosolvents for enzyme-catalyzed epoxide hydrolysis. J Biotechnol 147(3):169–171

    Article  Google Scholar 

  • Liu Y, Chen D, Yan Y, Peng C, Xu L (2011) Biodiesel synthesis and conformation of lipase from Burkholderia cepacia in room temperature ionic liquids and organic solvents. Bioresour Technol 102(22):10414–10418

    Article  Google Scholar 

  • Luo H, Fan W, Li Y, Nan G (2013) Biodiesel production using alkaline ionic liquid and adopted as lubricity additive for low-sulfur diesel fuel. Bioresour Technol 140:337–341

    Article  Google Scholar 

  • Mai NL, Ahn K, Koo Y-M (2014) Methods for recovery of ionic liquids—a review. Process Biochem 49(5):872–881

    Article  Google Scholar 

  • Manic MS, Najdanovic-Visak V, da Ponte MN, Visak ZP (2011) Extraction of free fatty acids from soybean oil using ionic liquids or poly(ethyleneglycol)s. AICHE J 57(5):1344–1355

    Article  Google Scholar 

  • Manirakiza P, Covaci A, Schepens P (2001) Comparative study on total lipid determination using Soxhlet, Roese-Gottlieb, Bligh & Dyer, and modified Bligh & Dyer extraction methods. J Food Compos Anal 14(1):93–100

    Article  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14(1):217–232

    Article  Google Scholar 

  • Maugeri Z, Leitner W, Domínguez de María P (2013) Chymotrypsin-catalyzed peptide synthesis in deep eutectic solvents. Eur J Org Chem 2013(20):4223–4228

    Article  Google Scholar 

  • Merza F, Fawzy A, AlNashef I, Al-Zuhair S, Taher H (2018) Effectiveness of using deep eutectic solvents as an alternative to conventional solvents in enzymatic biodiesel production from waste oils. Energy Rep 4:77–83

    Article  Google Scholar 

  • Neto BAD, Alves MB, Lapis AA, Nachtigall FM, Eberlin MN, Dupont J, Suarez PA (2007) 1-n-Butyl-3-methylimidazolium tetrachloro-indate (BMI· InCl4) as a media for the synthesis of biodiesel from vegetable oils. J Catal 249(2):154–161

    Article  Google Scholar 

  • Pan Y, Alam MA, Wang Z, Huang D, Hu K, Chen H, Yuan Z (2017) One-step production of biodiesel from wet and unbroken microalgae biomass using deep eutectic solvent. Bioresour Technol 238:157–163

    Article  Google Scholar 

  • Park S, Kazlauskas RJ (2001) Improved preparation and use of room-temperature ionic liquids in lipase-catalyzed enantio- and regioselective acylations. J Org Chem 66(25):8395–8401

    Article  Google Scholar 

  • Park S, Kazlauskas RJ (2003) Biocatalysis in ionic liquids–advantages beyond green technology. Curr Opin Biotechnol 14(4):432–437

    Article  Google Scholar 

  • Potdar MK, Kelso GF, Schwarz L, Zhang C, Hearn MT (2015) Recent developments in chemical synthesis with biocatalysts in ionic liquids. Molecules 20(9):16788–16816

    Article  Google Scholar 

  • Qin J, Zou X, Lv S, Jin Q, Wang X (2016) Influence of ionic liquids on lipase activity and stability in alcoholysis reactions. RSC Adv 6(90):87703–87709

    Article  Google Scholar 

  • Ramluckan K, Moodley KG, Bux F (2014) An evaluation of the efficacy of using selected solvents for the extraction of lipids from algal biomass by the soxhlet extraction method. Fuel 116:103–108

    Article  Google Scholar 

  • Richmond A (2013) Chapter 11 Biological principles of mass cultivation of photoautotrophic microalgae. In: Richmond A, Hu Q(eds) Handbook of microalgal culture: applied phycology and biotechnology, Second Edition. John Wiley & Sons (Publisher), https://doi.org/10.1002/9781118567166

    Google Scholar 

  • Ruzich NI, Bassi AS (2010) Investigation of lipase-catalyzed biodiesel production using ionic liquid [BMIM][PF6] as a co-solvent in 500 mL jacketed conical and shake flask reactors using triolein or waste canola oil as substrates. Energy Fuels 24(5):3214–3222

    Article  Google Scholar 

  • Schäfer AI, Fane AG, Waite TD (2005) Nanofiltration: principles and applications. Elsevier, Oxford

    Google Scholar 

  • Shahbaz K, Mjalli FS, Hashim M, Al-Nashef IM (2010) Using deep eutectic solvents for the removal of glycerol from palm oil-based biodiesel. J Appl Sci 10(24):3349–3354

    Article  Google Scholar 

  • Shahbaz K, Mjalli F, Hashim M, AlNashef I (2011a) Eutectic solvents for the removal of residual palm oil-based biodiesel catalyst. Sep Purif Technol 81(2):216–222

    Article  Google Scholar 

  • Shahbaz K, Mjalli F, Hashim M, AlNashef I (2011b) Using deep eutectic solvents based on methyl triphenyl phosphunium bromide for the removal of glycerol from palm-oil-based biodiesel. Energy Fuels 25(6):2671–2678

    Article  Google Scholar 

  • Shahbaz K, Baroutian S, Mjalli FS, Hashim MA, AlNashef IM (2012) Prediction of glycerol removal from biodiesel using ammonium and phosphunium based deep eutectic solvents using artificial intelligence techniques. Chemom Intell Lab Syst 118:193–199

    Article  Google Scholar 

  • Shahid EM, Jamal Y (2011) Production of biodiesel: a technical review. Renew Sust Energ Rev 15(9):4732–4745

    Article  Google Scholar 

  • Siedlecka EM, Czerwicka M, Neumann J, Stepnowski P, Fernández J, Thöming J (2011) Ionic liquids: methods of degradation and recovery. In: Ionic liquids: theory, properties, new approaches. InTech, Rijeka

    Google Scholar 

  • Sunitha S, Kanjilal S, Reddy P, Prasad R (2007) Ionic liquids as a reaction medium for lipase-catalyzed methanolysis of sunflower oil. Biotechnol Lett 29(12):1881–1885

    Article  Google Scholar 

  • Tao L, Yuefeng D, Shucai G, Ji C (2010) Application of choline chloride· xZnCl2 ionic liquids for preparation of biodiesel. Chin J Chem Eng 18(2):322–327

    Article  Google Scholar 

  • Tommasi E, Cravotto G, Galletti P, Grillo G, Mazzotti M, Sacchetti G, Samorì C, Tabasso S, Tacchini M, Tagliavini E (2017) Enhanced and selective lipid extraction from the microalga P. tricornutum by dimethyl carbonate and supercritical CO2 using deep eutectic solvents and microwaves as pretreatment. ACS Sustain Chem Eng 5(9):8316–8322

    Article  Google Scholar 

  • Troter DZ, Todorović ZB, Đokić-Stojanović DR, Stamenković OS, Veljković VB (2016) Application of ionic liquids and deep eutectic solvents in biodiesel production: a review. Renew Sust Energ Rev 61:473–500

    Article  Google Scholar 

  • Trujillo-Rodríguez MJ, Pino V, Anderson JL (2017) Magnetic ionic liquids as extraction solvents in vacuum headspace single-drop microextraction. Talanta 172:86–94

    Article  Google Scholar 

  • Wang J, Liu Y, Zhou Z, Fu Y, Chang J (2017) Epoxidation of soybean oil catalyzed by deep eutectic solvents based on the choline chloride–carboxylic acid bifunctional catalytic system. Ind Eng Chem Res 56(29):8224–8234

    Article  Google Scholar 

  • Wazeer I, Hayyan M, Hadj-Kali MK (2018) Deep eutectic solvents: designer fluids for chemical processes. J Chem Technol Biotechnol 93(4):945–958

    Article  Google Scholar 

  • Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99(8):2071–2084

    Article  Google Scholar 

  • Williamson ST, Shahbaz K, Mjalli FS, AlNashef IM, Farid MM (2017) Application of deep eutectic solvents as catalysts for the esterification of oleic acid with glycerol. Renew Energy 114:480–488

    Article  Google Scholar 

  • Wu Q, Chen H, Han M, Wang D, Wang J (2007) Transesterification of cottonseed oil catalyzed by Brønsted acidic ionic liquids. Ind Eng Chem Res 46(24):7955–7960

    Article  Google Scholar 

  • Wu B, Liu W, Zhang Y, Wang H (2009) Do we understand the recyclability of ionic liquids? Chem Eur J 15(8):1804–1810

    Article  Google Scholar 

  • Wu Z, Li Z, Wu G, Wang L, Lu S, Wang L, Wan H, Guan G (2014) Brønsted acidic ionic liquid modified magnetic nanoparticle: an efficient and green catalyst for biodiesel production. Ind Eng Chem Res 53(8):3040–3046

    Article  Google Scholar 

  • Yang H-Y, Lu W-J, Chen Y-C, Chen K-T, Teng J-C, Wan H-P (2017) New algal lipid extraction procedure using an amphiphilic amine solvent and ionic liquid. Biomass Bioenergy 100:108–115

    Article  Google Scholar 

  • Young G, Nippgen F, Titterbrandt S, Cooney MJ (2010) Lipid extraction from biomass using co-solvent mixtures of ionic liquids and polar covalent molecules. Sep Purif Technol 72(1):118–121

    Article  Google Scholar 

  • Zhang L, Xian M, He Y, Li L, Yang J, Yu S, Xu X (2009) A Brønsted acidic ionic liquid as an efficient and environmentally benign catalyst for biodiesel synthesis from free fatty acids and alcohols. Bioresour Technol 100(19):4368–4373

    Article  Google Scholar 

  • Zhang Q, Vigier KDO, Royer S, Jérôme F (2012) Deep eutectic solvents: syntheses, properties and applications. Chem Soc Rev 41(21):7108–7146

    Article  Google Scholar 

  • Zhang Y, Xia X, Duan M, Han Y, Liu J, Luo M, Zhao C, Zu Y, Fu Y (2016) Green deep eutectic solvent assisted enzymatic preparation of biodiesel from yellow horn seed oil with microwave irradiation. J Mol Catal B Enzym 123:35–40

    Article  Google Scholar 

  • Zhang H, Li H, Pan H, Liu X, Yang K, Huang S, Yang S (2017) Efficient production of biodiesel with promising fuel properties from Koelreuteria integrifoliola oil using a magnetically recyclable acidic ionic liquid. Energy Convers Manag 138:45–53

    Article  Google Scholar 

  • Zhao H, Baker GA (2013) Ionic liquids and deep eutectic solvents for biodiesel synthesis: a review. J Chem Technol Biotechnol 88(1):3–12

    Article  Google Scholar 

  • Zhao H, Baker GA, Holmes S (2011a) New eutectic ionic liquids for lipase activation and enzymatic preparation of biodiesel. Org Biomol Chem 9(6):1908–1916

    Article  Google Scholar 

  • Zhao H, Baker GA, Holmes S (2011b) Protease activation in glycerol-based deep eutectic solvents. J Mol Catal B Enzym 72(3):163–167

    Article  Google Scholar 

  • Zhao H, Zhang C, Crittle TD (2013) Choline-based deep eutectic solvents for enzymatic preparation of biodiesel from soybean oil. J Mol Catal B Enzym 85:243–247

    Article  Google Scholar 

  • Zhou S, Liu L, Wang B, Xu F, Sun RC (2012) Biodiesel preparation from transesterification of glycerol trioleate catalyzed by basic ionic liquids. Chin Chem Lett 23(4):379–382

    Article  Google Scholar 

  • Zuo M, Le K, Li Z, Jiang Y, Zeng X, Tang X, Sun Y, Lin L (2017) Green process for production of 5-hydroxymethylfurfural from carbohydrates with high purity in deep eutectic solvents. Ind Crop Prod 99:1–6

    Article  Google Scholar 

  • Zuo M, Le K, Feng Y, Xiong C, Li Z, Zeng X, Tang X, Sun Y, Lin L (2018) An effective pathway for converting carbohydrates to biofuel 5-ethoxymethylfurfural via 5-hydroxymethylfurfural with deep eutectic solvents (DESs). Ind Crop Prod 112:18–23

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. AlNashef .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wazeer, I., Hadj-Kali, M.K., AlNashef, I.M. (2019). Applications of Ionic Liquids and Deep Eutectic Solvents in Biorefinery-Biodiesel Production. In: Bastidas-Oyanedel, JR., Schmidt, J. (eds) Biorefinery. Springer, Cham. https://doi.org/10.1007/978-3-030-10961-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10961-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10960-8

  • Online ISBN: 978-3-030-10961-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics