Skip to main content

Biogas: Perspectives of an Old Technology

  • Chapter
  • First Online:
Book cover Biorefinery

Abstract

Anaerobic digestion is a key process in any sustainable organic waste management strategy and wastewater treatment process. It has proved to be one of the most effective methods for the mitigation of greenhouse gases emissions, contributing to the production of renewable energy and enabling the application of nutrient recovery processes. Biogas produced is a renewable and flexible fuel and able to cover heat and electricity and transport energy demands. Its upgrading and injection into the natural gas grid favour its use where efficiencies are the highest, even as a resource for the chemical industry, integrating either geographical distributed production or consumption. In spite of the multiple advantages, current economics is very dependent on energy prices and on the given government policy in areas such as regional development, waste management, renewable energy or climate change. In a context of a bio-based economy society, anaerobic digestion can also contribute to the production of carboxylates, which can be recovered for the synthesis of more complex chemicals, with higher economic value than biogas, maintaining the suitability of the process for the recovery of nutrients and of the remaining energy from the substrate. This flexibility confers a wide range of added value products and application areas to the anaerobic digestion process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta N, De Vrieze J (2018) Anaerobic digestion as key technology in the bio-based economy. In: Stams A, Sousa D (eds) Biogenesis of hydrocarbons. Handbook of hydrocarbon and lipid microbiology. Springer, Cham

    Google Scholar 

  • ADEME (2018) A 100% renewable gas mix in 2050? Study summary Joint study of ADEME, GrDF and GRTgaz, Angers (France), February 2018. http://www.ademe.fr/en/a-100-renewable-gas-mix-in-2050. Accessed 4 Apr 2018

  • Adler P, Billig E, Brosowski A, Daniel-Gromke J, Falke I, Fischer E, Grope J, Holzhammer U, Postel J, Schnutenhaus J, Stecher K, Szomszed G, Trommler M, Urban W (2014) Leitfaden Biogasaufbereitung und–einspeisung (Guideline biogas treatment and feeding). Fachagentur Nachwachsende Rohstoffe e.V. (FNR), Gulzow-Pruzen

    Google Scholar 

  • Affes R, Palatsi J, Flotats X, Carrère H, Steyer JP, Battimelli A (2013) Saponification pretreatment and solids recirculation as a new anaerobic process for the treatment of slaughterhouse waste. Bioresour Technol 131:460–467

    Article  Google Scholar 

  • Ahring BK, Biswas R, Ahamed A, Teller PJ, Uellendahl H (2015) Making lignin accessible for anaerobic digestion by wet-explosion pretreatment. Bioresour Technol 175:182–188

    Article  Google Scholar 

  • Ahring BK, Traverso JJ, Murali N, Srinivas K (2016) Continuous fermentation of clarified corn Stover hydrolysate for the production of lactic acid at high yield and productivity. Biochem Eng J 109:162–169

    Article  Google Scholar 

  • Al Seadi T (2001) Good practice in quality management of AD residues from biogas production. Report made for the International Energy Agency, Task 24-Energy from Biological Conversion of Organic Waste. IEA Bioenergy and AEA Technology Environment, Oxfordshire, United Kingdom

    Google Scholar 

  • Al Seadi T, Rutz D, Prassl H, Köttner M, Finsterwalder T, Volk S, Janssen R (2008) Biogas handbook. University of Southern Denmark, Esbjerg. http://www.lemvigbiogas.com/BiogasHandbook.pdf. Accessed 20 Mar 2018

  • Angelidaki I, Ellegaard L (2003) Codigestion of manure and organic wastes in centralized biogas plants; status and future trends. Appl Biochem Biotechnol 109:95–105

    Article  Google Scholar 

  • Angenent LT, Sung S, Raskin L (2002) Methanogenic population dynamics during startup of a full-scale anaerobic sequencing batch reactor treating swine waste. Water Res 36:4648–4654

    Article  Google Scholar 

  • Aydin S, Yesil H, Tugtas AE (2018) Recovery of mixed volatile fatty acids from anaerobically fermented organic wastes by vapor permeation membrane contactors. Bioresour Technol 250:548–555

    Article  Google Scholar 

  • Baba Y, Tada C, Watanabe R, Fukuda Y, Chida N, Nakai Y (2013) Anaerobic digestion of crude glycerol from biodiesel manufacturing using a large-scale pilot plant: methane production and application of digested sludge as fertilizer. Bioresour Technol 140:342–348

    Article  Google Scholar 

  • Bailón L, Hinge J (2012) Biogas and bio-syngas upgrading. Danish Technological Institute, Taastrup

    Google Scholar 

  • Bastidas-Oyanedel JR, Schmidt JE (2018) Increasing profits in food waste biorefinery—a techno-economic analysis. Energies 11:1551

    Article  Google Scholar 

  • Bastidas-Oyanedel JR, Mohd-Zaki Z, Zeng RJ, Bernet N, Pratt S, Steyer JP, Batstone DJ (2012) Gas controlled hydrogen fermentation. Bioresour Technol 110:503–509

    Article  Google Scholar 

  • Bastidas-Oyanedel JR, Bonk F, Thomsen MH, Schmidt JE (2015) Dark fermentation biorefinery in the present and future (bio)chemical industry. Rev Environ Sci Biotechnol 14:473–498

    Article  Google Scholar 

  • Batstone DJ, Keller J, Angelidaki I, Kalyuzhnyi SV, Pavlostathis SG, Rozzi A, Sanders WTM, Siegrist H, Vavilin VA (2002) Anaerobic digestion model no.1 (ADM1). Scientific and Technical Report No. 13. IWA, London

    Google Scholar 

  • Bayrakdar A, Sürmeli RÖ, Çalli B (2018) Anaerobic digestion of chicken manure by a leach-bed process coupled with side-stream membrane ammonia separation. Bioresour Technol 258:41–47

    Article  Google Scholar 

  • Beil M, Beyrich W (2013) Biogas upgrading to biomethane. In: Wellinger A, Murphy J, Baxter D (eds) The biogas handbook: science, production and applications, Woodhead publishing series in energy number, vol 52. Woodhead, Cambridge, pp 342–377

    Chapter  Google Scholar 

  • Biswas R, Uellendahl H, Ahring BK (2015) Wet explosion: a universal and eficient pre-treatment process for lignocellulosic biorefineries. Bioenergy Res 8:1101–1116

    Article  Google Scholar 

  • Bonk F, Bastidas-Oyanedel JR, Yousef AF, Schmidt JE (2017) Exploring the selective lactic acid production from food waste in uncontrolled pH mixed culture fermentations using different reactor configurations. Bioresour Technol 238:416–424

    Article  Google Scholar 

  • Bonmatí A, Flotats X (2003a) Air stripping of ammonia from pig slurry: characterization and feasibility as a pre- or post-treatment to mesophilic anaerobic digestion. Waste Manag 23:261–272

    Article  Google Scholar 

  • Bonmatí A, Flotats X (2003b) Pig slurry concentration by vacuum evaporation: influence of previous mesophilic anaerobic digestion process. J Air Waste Manage Assoc 53:21–31

    Article  Google Scholar 

  • Bonmatí A, Flotats X, Mateu L, Campos E (2001) Study of thermal hydrolysis as a pre-treatment to mesophilic anaerobic digestion of pig slurry. Water Sci Technol 44:109–116

    Article  Google Scholar 

  • Buelens LC, Galvita VV, Poelman H, Detavernier C, Marin GB (2016) Super-dry reforming of methane intensifies CO2 utilization via Le Chatelier’s principle. Science 354:449–452

    Article  Google Scholar 

  • Cagnetta C, Coma M, Vlaeminck SE, Rabaey K (2016) Production of carboxylates from high rate activated sludge through fermentation. Bioresour Technol 217:165–172

    Article  Google Scholar 

  • Carballa M, Duran C, Hospido A (2011) Should we pretreat solid waste prior to anaerobic digestion? An assessment of its environmental cost. Environ Sci Technol 45:10306–10314

    Article  Google Scholar 

  • Carlson M, Lagerkvist A, Morgan-Sagastume F (2012) The effects of substrate pre-treatment on anaerobic digestion systems: a review. Waste Manag 32:1634–1650

    Article  Google Scholar 

  • Cavaleiro AJ, Pereira MA, Guedes AP, Stams AJM, Alves MA, Sousa DZ (2016) Conversion of Cn-unsaturated into Cn-2-saturated LCFA can occur uncoupled from methanogenesis in anaerobic bioreactors. Environ Sci Technol 50:3082–3090

    Article  Google Scholar 

  • Cecchi F, Traverso P, Pavan P, Bolzonella D, Innocenti L (2003) Characteristics of the OFMSW and behaviour of the anaerobic digestion process. In: Mata-Alvarez J (ed) Biomethanization of the organic fraction of municipal solid wastes. IWA, London, pp 141–179

    Google Scholar 

  • Cerrillo M, Palatsi J, Comas J, Vicens J, Bonmatí A (2015) Struvite precipitation as a technology to be integrated in a manure anaerobic digestion treatment plant—removal efficiency, crystal characterization and agricultural assessment. J Chem Technol Biotechnol 90:1135–1143

    Article  Google Scholar 

  • Chang S, Li J, Liu F (2011) Continuous biohydrogen production from diluted molasses in an anaerobic contact reactor. Front Environ Sci Eng China 5:140–148

    Article  Google Scholar 

  • Chen YR, Hashimoto AG (1978) Kinetics of methane fermentation. Biotechnol Bioeng Symp 8:269–282

    Google Scholar 

  • Chen Q, Liu T (2017) Biogas system in rural China: upgrading from decentralized to centralized? Renew Sustain Energy Rev 78:933–944

    Article  Google Scholar 

  • Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99:4044–4064

    Article  Google Scholar 

  • Chen L, Zhao L, Ren C, Wang F (2012) The progress and prospects of rural biogas production in China. Energy Policy 51:58–63

    Article  Google Scholar 

  • Chernicharo CAL (2007) Anaerobic reactors, Biological wastewater treatment series, vol 4. IWA, London

    Google Scholar 

  • Chiumenti A, da Borso F, Chiumenti R, Teri F, Segantin P (2013) Treatment of digestate from a co-digestion biogas plant by means of vacuum evaporation: tests for process optimization and environmental sustainability. Waste Manag 33:1339–1344

    Article  Google Scholar 

  • De Vrieze J, Smet D, Klok J, Colsen J, Angenent LT, Vlaeminck SE (2016) Thermophilic sludge digestion improves energy balance and nutrient recovery potential in full-scale municipal wastewater treatment plants. Bioresour Technol 218:1237–1245

    Article  Google Scholar 

  • Deublein D, Steinhauser A (2008) Biogas from waste and renewable resources: an introduction. Wiley-VCH editors Verlag GmbH, Weinheim

    Book  Google Scholar 

  • Domenech PL, Flotats X (1997) A simplified mathematical model for an upflow anaerobic fixed film reactor under transient loading. Hung J Ind Chem 25:315–320. http://hdl.handle.net/2117/6744. Accessed 6 Sept 2018

    Google Scholar 

  • Donoso-Bravo A, Rosenkranz F, Valdivia V, Torrijos M, Ruiz-Filippi G, Chamy R (2009) Anaerobic sequencing batch reactor as an alternative for the biological treatment of wine distillery effluents. Water Sci Technol 60:1155–1160

    Article  Google Scholar 

  • Duncan J, Bokhary A, Fatehi P, Kong F, Lin H, Liao B (2017) Thermophilic membrane bioreactors: a review. Bioresour Technol 243:1180–1193

    Article  Google Scholar 

  • EBA (2016) Biomethane in transport. European Biogas Association, Brussels

    Google Scholar 

  • Edenhofer O, Pichs-Madruga R, Sokona Y, Kadner S, Minx JC, Brunner S, Agrawala S, Baiocchi G, Bashmakov IA, Blanco G, Broome J, Bruckner T, Bustamante M, Clarke L, Conte Grand M, Creutzig F, Cruz-Núñez X, Dhakal S, Dubash NK, Eickemeier P, Farahani E, Fischedick M, Fleurbaey M, Gerlagh R, Gómez-Echeverri L, Gupta S, Harnisch J, Jiang K, Jotzo F, Kartha S, Klasen S, Kolstad C, Krey V, Kunreuther H, Lucon O, Masera O, Mulugetta Y, Norgaard RB, Patt A, Ravindranath NH, Riahi K, Roy J, Sagar A, Schaeffer R, Schlömer S, Seto KC, Seyboth K, Sims R, Smith P, Somanathan E, Stavins R, von Stechow C, Sterner T, Sugiyama T, Suh S, Ürge-Vorsatz D, Urama K, Venables A, Victor DG, Weber E, Zhou D, Zou J, Zwickel T (2014) Technical summary. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S, Eickemeier P, Kriemann B, Savolainen J, Schlömer S, von Stechow C, Zwickel T, Minx JC (eds) Climate change 2014: mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York

    Google Scholar 

  • Edwards J, Othman M, Burn S (2015) A review of policy drivers and barriers for the use of anaerobic digestion in Europe, the United States and Australia. Renew Sustain Energy Rev 52:815–828

    Article  Google Scholar 

  • Edwiges T, Mayer B, Frare L, Lins L, Triolo JM, Flotats X, Sarolli M (2018) Influence of chemical composition on biochemical methane potential of fruit and vegetable waste. Waste Manag 71:618–625

    Article  Google Scholar 

  • EPA (2014) Biogas opportunities roadmap. Voluntary Actions to Reduce Methane Emissions and Increase Energy Independence Joint USDA, EPA and DOE Report, August 2014. https://www.epa.gov/sites/production/files/2015-12/documents/biogas-roadmap.pdf. Accessed 16 Jul 2018

  • EPA (2018) Market opportunities for biogas recovery systems at U.S. livestock facilities. AgSTAR program, Report EPA-430-R-18-006, June 2018

    Google Scholar 

  • EurObserv’ER (2017) Biogas Barometer. https://www.eurobserv-er.org/biogas-barometer-2017/. Accessed 2 Apr 2018

  • European Parliament (2017) Report on the proposal for a regulation of the European Parliament and of the Council laying down rules on the making available on the market of CE marked fertilising products and amending regulations (EC) no 1069/2009 and (EC) no 1107/2009. http://www.europarl.europa.eu/sides/getDoc.do?type=REPORT&reference=A8-2017-0270&language=EN. Accessed 12 Apr 2018

  • EUROSTAT (2018a) Electricity price statistics. http://ec.europa.eu/eurostat/statistics-explained/index.php?title=Electricity_price_statistics. Accessed 24 July 2018

  • EUROSTAT (2018b) Natural gas price statistics. http://ec.europa.eu/eurostat/statistics-explained/index.php/Natural_gas_price_statistics. Accessed 23 July 2018

  • Fernández B, Poirrier P, Chamy R (2001) Effect of inoculum-substrate ratio on the start-up of solid waste anaerobic digesters. Water Sci Technol 44:103–108

    Article  Google Scholar 

  • Flotats X (2018) Implantación de la digestión anaerobia en el sector agropecuario (Implementation of anaerobic digestion in the agricultural sector). In: Chiva S, Berlanga JG, Martínez R, Climent J (eds) Depuración de aguas residuales: digestión anaerobia. Publicacions de la Universitat Jaume I, Castellón, pp 44–66. https://doi.org/10.6035/UJI.FACSA.2018.2

    Chapter  Google Scholar 

  • Flotats X, Gibert V (2002) Mas el Cros biogas plant. Evaluation of 18 years in operation. In: Kalyuzhnyi S (ed) Proceedings of the 7th FAO/SREN workshop on “Anaerobic digestion for sustainability in waste (water) treatment and re-use”, vol 1. Moscow State University, Moscow, pp 172–180

    Google Scholar 

  • Flotats X, Sarquella L (2008) Producció de biogàs per codigestió anaeròbia (Biogas production by codigestion). Col·lecció Quadern Pràctic, número 1. Institut Català d’Energia, Barcelona. http://hdl.handle.net/2117/2265. Accessed 24 Apr 2018

  • Flotats X, Bonmatí A, Fernández B, Magrí A (2009) Manure treatment technologies: on-farm versus centralized strategies. NE Spain as case study. Bioresour Technol 100:5519–5526

    Article  Google Scholar 

  • Flotats X, Foged HL, Bonmatí A, Palatsi J, Magrí A, Schelde KM (2012) Manure processing technologies. Technical Report no. II concerning “Manure Processing Activities in Europe” to the European Commission, Directorate-General Environment. http://hdl.handle.net/2117/18944. Accessed 4 June 2018

  • Flotats X, Fernández B, Palatsi J (2013) Characterization of the anaerobic digestion of proteins containing animal by-products, using simultaneous batch experiments. In: Proceedings of the 13th World Congress on Anaerobic Digestion (AD13), Santiago de Compostela, 25–28 June 2013. http://hdl.handle.net/2117/97998. Accessed 15 May 2018

  • Flotats X, Bonmatí A, Fernández B, Sales D, Aymerich E, Irizar J, Palatsi J, Romero LI, Pérez M, Vicent T, Font X (2016) Ingeniería y aspectos técnicos de la digestión anaeróbica (Engineering and technical aspects of anaerobic digestion). Volume II.4, “De Residuo a Recurso, el camino hacia la sostenibilidad” books series. Spanish network of Composting, Ed Mundi-Prensa, Madrid

    Google Scholar 

  • Foged HL, Flotats X, Bonmatí A (2012a) Future trends on manure processing activities in Europe. Technical Report no. V concerning “Manure processing activities in Europe” to the European Commission, Directorate-General Environment. http://hdl.handle.net/2117/18948. Accessed 4 June 2018

  • Foged HL, Flotats X, Bonmatí A, Palatsi J, Magrí A (2012b) End and by-products from livestock manure processing - general types, chemical composition, fertilising quality and feasibility for marketing. Technical Report no. III concerning “Manure processing activities in Europe” to the European Commission, Directorate-General Environment. http://hdl.handle.net/2117/18945. Accessed 22 May 2018

  • Foged HL, Flotats X, Bonmatí A, Schelde KM, Palatsi J, Magrí A, Zonta ZJ (2012c) Assessment of economic feasibility and environmental performance of manure processing technologies. Technical Report no. IV concerning “Manure Processing Activities in Europe” to the European Commission, Directorate-General Environment. http://hdl.handle.net/2117/18947. Accessed 7 June 2018

  • García-González MCC, Vanotti MBB (2015) Recovery of ammonia from swine manure using gas-permeable membranes: effect of waste strength and pH. Waste Manag 38:455–461

    Article  Google Scholar 

  • Garfí M, Martí-Herrero J, Garwood A, Ferrer I (2016) Household anaerobic digesters for biogas production in Latin America: a review. Renew Sustain Energy Rev 60:599–614

    Article  Google Scholar 

  • Gavala HN, Yenal U, Skiadas IV, Westermann P, Ahring BK (2003) Mesophilic and thermophilic anaerobic digestion of primary and secondary sludge. Effect of pre-treatment at elevated temperature. Water Res 37:4561–4457

    Article  Google Scholar 

  • Ge HQ, Jensen PD, Batstone DJ (2011) Temperature phased anaerobic digestion increases apparent hydrolysis rate for waste activated sludge. Water Res 45:1597–1606

    Article  Google Scholar 

  • Giuntoli J, Agostini A, Edwards R, Marelli L (2015) Solid and gaseous bioenergy pathways: input values and GHG emissions. JRC Science and Policy Reports, European Comission, Report EUR 27215. https://doi.org/10.2790/299090

  • Gonzalez-Cabaleiro R, Lema JM, Rodriguez J, Kleerebezem R (2013) Linking thermodynamics and kinetics to assess pathway reversibility in anaerobic bioprocesses. Energ Environ Sci 6:3780–3789

    Article  Google Scholar 

  • Gosens J, Lu Y, He G, Bluemling B, Beckers TAM (2013) Sustainability effects of household-scale biogas in rural China. Energy Policy 54:273–287

    Article  Google Scholar 

  • Guwy AJ, Dinsdale RM, Kim JR, Massanet-Nicolau J, Premier G (2011) Fermentative biohydrogen production systems integration. Bioresour Technol 102:8534–8542

    Article  Google Scholar 

  • Hartmann S, Wirth B, Niebaum N, Döhler H, Keymer U, Reinhold G (2012) Economics. In: Fachagentur Nachwachsende Rohstoffe e. V. (FNR) (ed) Guide to biogas. From production to use. Abt. Öffentlichkeitsarbeit, Gülzow, pp 159–178

    Google Scholar 

  • Hashimoto AG (1986) Ammonia inhibition of methanogenesis from cattle wastes. Agric Wastes 17:241–261

    Article  Google Scholar 

  • Hattori S (2008) Syntrophic acetate-oxidizing microbes in methanogenic environments. Microbes Environ 23:118–127

    Article  Google Scholar 

  • Hjort-Gregersen K (2002) Development and implementation of the Danish centralised biogas concept—financial aspects. In: van Ierland EC, Lansink AO (eds) Economics of sustainable energy in agriculture. Kluwer Academic, Dordrecht, pp 177–188

    Google Scholar 

  • Holliger C, Alves M, Andrade D, Angelidaki I et al (2016) Towards a standardization of biomethane potential tests. Water Sci Technol 74:2515–2522

    Article  Google Scholar 

  • Hou Y, Velthof GL, Case SDC, Oelofse M, Grignani M, Balsari P, Zavattaro L, Gioelli F, Bernal MP, Fangueiro D, Trindade H, Jensen LS, Oenemab O (2018) Stakeholder perceptions of manure treatment technologies in Denmark, Italy, the Netherlands and Spain. J Clean Prod 172:1620–1630

    Article  Google Scholar 

  • Hulshoff Pol LW, De Castro Lopes SI, Lettinga G, Lens PNL (2004) Anaerobic sludge granulation. Water Res 38:1376–1389

    Article  Google Scholar 

  • Ijmker HM, Gramblicka M, Kersten SRA, van der Ham AGJ, Schuur B (2014) Acetic acid extraction from aqueous solutions using fatty acids. Sep Purif Technol 125:256–263

    Article  Google Scholar 

  • IRENA (2018) Biogas for road vehicles: technology brief. International Renewable Energy Agency, Abu Dhabi. https://www.irena.org. Accessed March 2018

    Google Scholar 

  • Jain S, Jain S, Wolf IT, Lee J, Tong YW (2015) A comprehensive review on operating parameters and different pretreatment methodologies for anaerobic digestion of municipal solid waste. Renew Sustain Energy Rev 52:142–154

    Article  Google Scholar 

  • Johansen A, Nielsen HB, Hansen CM, Andreasen C, Carlsgart J, Hauggard-Nielsen H, Roepstorff A (2013) Survival of weed seeds and animal parasites as affected by anaerobic digestion at meso- and thermophilic conditions. Waste Manag 33:807–812

    Article  Google Scholar 

  • Jones RJ, Massanet-Nicolau J, Guwy A, Premier GC, Dinsdale RM, Reilly M (2015) Removal and recovery of inhibitory volatile fatty acids from mixed acid fermentations by conventional electrodialysis. Bioresour Technol 189:279–284

    Article  Google Scholar 

  • Jones RJ, Massanet-Nicolau J, Mulder MJJ, Premier GC, Dinsdale R, Guwy A (2017) Enhanced volatile fatty acid production via the batch electrodialysis of a dark fermentation fermenter continually fed with sucrose. Proceedings of the 15th World Congress on Anaerobic Digestion, Beijing (China), 17–20 October 2017, pp 661–664

    Google Scholar 

  • Jurado E, Skiadas IV, Gavala HN (2013) Enhanced methane productivity from manure fibers by aqueous ammonia soaking pretreatment. Appl Energy 109:104–111

    Article  Google Scholar 

  • Juznic-Zonta Z, Alves MM, Flotats X, Palatsi J (2013) Modelling inhibitory effects of long chain fatty acids in the anaerobic digestion process. Water Res 47:1369–1380

    Article  Google Scholar 

  • Kafle GK, Kim SH, Sung KI (2013) Ensiling of fish industry waste for biogas poduction: a lab scale evaluation of biochemical methane potential (BMP) and kinetics. Bioresour Technol 127:326–336

    Article  Google Scholar 

  • Kennedy KJ, Droste RL (1991) Anaerobic wastewater treatment in downflow stationary fixed film reactors. Water Sci Technol 24:157–177

    Article  Google Scholar 

  • Kondusamy D, Kalamdhad AS (2014) Pre-treatment and anaerobic digestion of food waste for high rate methane production—a review. J Environ Chem Eng 2:1821–1830

    Article  Google Scholar 

  • Laureni M, Palatsi J, Llovera M, Bonmatí A (2013) Influence of pig slurry characteristics on ammonia stripping efficiencies and quality of the recovered ammonium-sulfate solution. J Chem Technol Biotechnol 88:1654–1662

    Article  Google Scholar 

  • Lauterböck B, Ortner M, Haider R, Fuchs W (2012) Counteracting ammonia inhibition in anaerobic digestion by removal with a hollow fiber membrane contactor. Water Res 46:4861–4869

    Article  Google Scholar 

  • Lauterböck B, Moder K, Germ T, Fuchs W (2013) Impact of characteristic membrane parameters on the transfer rate of ammonia in membrane contactor application. Sep Purif Technol 116:327–334

    Article  Google Scholar 

  • Lauterböck B, Nikolausz M, Lv Z, Baumgartner M, Liebhard G, Fuchs W (2014) Improvement of anaerobic digestion performance by continuous nitrogen removal with a membrane contactor treating a substrate rich in ammonia and sulfide. Bioresour Technol 158:209–216

    Article  Google Scholar 

  • Lettinga G, van Velsen AFM, Hobma SW, de Zeeuw W, Klapwijk A (1980) Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. Biotechnol Bioeng 22:699–734

    Article  Google Scholar 

  • Lin H, Peng W, Zhang M, Chen J, Hong H, Zhang Y (2013) A review on anaerobic membrane bioreactors: applications, membrane fouling and future perspectives. Desalination 314:169–188

    Article  Google Scholar 

  • Lorenz H, Fisher P, Schumacher B, Adler P (2013) Current EU-27 technical potential of organic waste streams for biogas and energy production. Waste Manag 33:2434–2448

    Article  Google Scholar 

  • Lukehurst C, Frost P, Al Seadi T (2010) Utilisation of digestate from biogas plants as biofertizer. Bioenergy Task 37—Energy from Biogas. IEA Bioenergy. http://task37.ieabioenergy.com/technical-brochures.html. Accessed 4 June 2018

  • Luostarinen S, Luste S, Sillanpää M (2009) Increased biogas production at wastewater treatment plants through co-digestion of sewage sludge with grease trap sludge from a meat processing plant. Bioresour Technol 100:79–85

    Article  Google Scholar 

  • Maniatis K, Landälv I, Waldheim L, van den Heuvel E, Kalligeros S (2017) Final report: building up the future. Sub group on advanced biofuels, sustainable transport forum, European Commission. Publications Office of the European Union, March 2017

    Google Scholar 

  • Massé DI, Massé L, Croteau F (2003) The effect of temperature fluctuations on psychrophilic anaerobic sequencing batch reactors treating swine manure. Bioresour Technol 89:57–62

    Article  Google Scholar 

  • Miron Y, Zeeman G, van Lier JB, Lettinga G (2000) The role of sludge retention time in the hydrolysis and acidification of lipids, carbohydrates and proteins during digestion of primary sludge in CSTR systems. Water Res 34:1705–1713

    Article  Google Scholar 

  • Molinuevo-Salces B, Fernández-Varela R, Uellendahl H (2014) Key factors influencing the potential of catch crops for methane production. Environ Technol 35:1685–1694

    Article  Google Scholar 

  • Molinuevo-Salces B, Larsen SU, Ahring BK, Uellendahl H (2015) Biogas production from catch crops: increased yield by combined harvest of catch crops and straw and preservation by ensiling. Biomass Bioenergy 79:3–11

    Article  Google Scholar 

  • Möller K, Müller T (2012) Effects of anaerobic digestion on digestate nutrient availability and crop growth: a review. Eng Life Sci 12:242–257

    Article  Google Scholar 

  • Murphy J, Braun R, Weiland P, Wellinger A (2011) Biogas from energy crop digestion. Bioenergy Task 37—Energy from biogas. IEA Bioenergy. http://task37.ieabioenergy.com/technical-brochures.html. Accessed 18 May 2018

  • Nagy D, Balogh P, Gabnai Z, Popp J, Oláh J, Bai A (2018) Economic analysis of pellet production in co-digestion biogas plants. Energies 11(5):1135

    Article  Google Scholar 

  • Nähle C (1991) The contact process for the anaerobic treatment of wastewater: technologies, design and experiences. Water Sci Technol 24:179–191

    Article  Google Scholar 

  • Neumann P, Pesante S, Venegas M, Vidal G (2016) Developments in pre-treatment methods to improve anaerobic digestion of sewage sludge. Rev Environ Sci Biotechnol 15:173–211

    Article  Google Scholar 

  • Neves L, Oliveira R, Alves MM (2006) Anaerobic co-digestion of coffee waste and sewage sludge. Waste Manag 26:176–181

    Article  Google Scholar 

  • Noguerol J, Rodríguez-Abalde A, Romero E, Flotats X (2012) Determination of chemical oxygen demand in heterogeneous solid or semisolid samples using a novel method combining solid dilutions as a preparation step followed by optimized closed reflux and colorimetric measurement. Anal Chem 84:5548–5555

    Article  Google Scholar 

  • Nzeteu CO, Trego AC, Abram F, O'Flaherty V (2018) Reproducible, high-yielding, biological caproate production from food waste using a single-phase anaerobic reactor system. Biotechnol Biofuels 11:108

    Article  Google Scholar 

  • Oenema O, Witzke HP, Klimont Z, Lesschen JP, Velthof GL (2009) Integrated assessment of promising measures to decrease nitrogen losses in agriculture in EU-27. Agric Ecosyst Environ 133:280–288

    Article  Google Scholar 

  • Örlygsson J, Houwen FP, Svensson BH (1995) Thermophilic anaerobic amino acid degradation: deamination rates and end product formation. Appl Microbiol Biotechnol 43:235–241

    Article  Google Scholar 

  • Ortiz-Cabrera MA, Nayak A, Flotats X (2018) Polyphenols removal in winery wastewater using an AnSBR. XIII Latin American Workshop and Symposium on Anaerobic Digestion (DAAL XIII), Medellin (Colombia), 21–24 October 2018

    Google Scholar 

  • Ozgun H, Dereli RK, Ersahin ME, Kinaci C, Spanjers H, van Lier JB (2013) A review of anaerobic membrane bioreactors for municipal wastewater treatment: integration options, limitations and expectations. Sep Purif Technol 118:89–104

    Article  Google Scholar 

  • Palatsi J, Campos-Pozuelo E, Torres M, Porras S, Flotats X (2005) Full-scale combination of anaerobic digestion and concentration by evaporation in Garrigues (Lleida, Spain): evaluation after 2 years of operation. In: Bernal MP, Moral R, Clemente R, Paredes C (eds) Proceedings of the International Conference of the FAO ESCORENA Network on Recycling of Agricultural, Municipal and Industrial Residues in Agriculture, Murcia (Spain), October 2004, vol 2, pp 155–158

    Google Scholar 

  • Palatsi J, Laureni M, Andrés MV, Flotats X, Nielsen HB, Angelidaki I (2009) Strategies for recovering inhibition caused by long-chain fatty acids on anaerobic thermophilic biogas reactors. Bioresour Technol 100:4588–4596

    Article  Google Scholar 

  • Palatsi J, Illa J, Prenafeta-Boldu FX, Laureni M, Fernandez B, Angelidaki I, Flotats X (2010) Long-chain fatty acids inhibition and adaptation process in anaerobic thermophilic digestion: batch tests, microbial community structure and mathematical modeling. Bioresour Technol 101:2243–2251

    Article  Google Scholar 

  • Palatsi J, Affes R, Fernández B, Pereira A, Alves M, Flotats X (2012) Influence of adsorption and anaerobic granular sludge characteristics on long chain fatty acids inhibition process. Water Res 46:5268–5278

    Article  Google Scholar 

  • Pardo G, Moral R, del Prado A (2017) SIMSWASTE-AD–a modelling framework for the environmental assessment of agricultural waste management strategies: anaerobic digestion. Sci Total Environ 574:806–817

    Article  Google Scholar 

  • Passos F, Carretero J, Ferrer I (2015) Comparing pretreatment methods for improving microalgae anaerobic digestion: thermal, hydrothermal, microwave and ultrasound. Chem Eng J 279:667–672

    Article  Google Scholar 

  • Pereira MA, Pires OC, Mota M, Alves MM (2005) Anaerobic biodegradation of oleic and palmitic acids: evidence of mass transfer limitations caused by long chain fatty acids. Accumulation onto the anaerobic sludge. Biotechnol Bioeng 92:15–23

    Article  Google Scholar 

  • Pfau SF, Hagens JE, Dankbaar B (2017) Biogas between renewable energy and bio-economy policies—opportunities and constraints resulting from a dual role. Energy Sustain Soc 7:17

    Article  Google Scholar 

  • Poeschl M, Ward S, Owende P (2010a) Prospects for expanded utilization of biogas in Germany. Renew Sustain Energy Rev 14:1782–1797

    Article  Google Scholar 

  • Poeschl M, Ward S, Owende P (2010b) Evaluation of energy efficiency of various biogas production and utilization pathways. Appl Energy 87:3305–3321

    Article  Google Scholar 

  • Poeschl M, Ward S, Owende P (2012a) Environmental impacts of biogas deployment–part I: life cycle inventory for evaluation of production process emissions to air. J Clean Prod 24:168–183

    Article  Google Scholar 

  • Poeschl M, Ward S, Owende P (2012b) Environmental impacts of biogas deployment - part II: life cycle assessment of multiple production and utilization pathways. J Clean Prod 24:184–201

    Article  Google Scholar 

  • Powers WJ, van Horn HH, Wilkie AC, Wilcox CJ, Nordstedt RA (1999) Effects of anaerobic digestion and additives to effluent or cattle feed on odour and odorant concentrations. J Anim Sci 77:1412–1421

    Article  Google Scholar 

  • Ramsay IR (1997) Modelling and control of high-rate anaerobic wastewater treatment systems. PhD Thesis. Department of Chemical Engineering, University of Queensland, Brisbane

    Google Scholar 

  • Ramsay IR, Pullammanappallil PC (2001) Protein degradation during anaerobic wastewater treatment: derivation of stoichiometry. Biodegradation 12:247–257

    Article  Google Scholar 

  • Rebecchi S, Pinelli D, Bertin L, Zama F, Fava F, Frascari D (2016) Volatile fatty acids recovery from the effluent of an acidogenic digestion process fed with grape pomace by adsorption on ion exchange resins. Chem Eng J 306:629–639

    Article  Google Scholar 

  • Rittmann BE, McCarty PL (2001) Environmental biotechnology: principles and applications. McGraw-Hill Book, New York

    Google Scholar 

  • Rodríguez J, Kleerebezem R, Lema JM, van Loosdrecht MCM (2006) Modeling product formation in anaerobic mixed culture fermentations. Biotechnol Bioeng 93:592–606

    Article  Google Scholar 

  • Rodriguez C, Alaswad A, Mooney J, Prescott T, Olabi AG (2015) Pre-treatment techniques used for anaerobic digestion of algae. Fuel Process Technol 138:765–779

    Article  Google Scholar 

  • Rodríguez-Abalde A, Fernández B, Silvestre G, Flotats X (2011) Effects of thermal pre-treatments on solid slaughterhouse waste methane potential. Waste Manag 31:1488–1493

    Article  Google Scholar 

  • Rodríguez-Abalde A, Gómez X, Blanco D, Cuetos MJ, Fernández B, Flotats X (2013) Study of thermal pre-treatment on anaerobic digestion of slaughterhouse waste by TGA-MS and FTIR spectroscopy. Waste Manag Res 31:1195–1202

    Article  Google Scholar 

  • Romero-Güiza MS, Tait S, Astals S, del Valle-Zermeño R, Martínez M, Mata-Alvarez J, Chimenos JM (2015) Reagent use efficiency with removal of nitrogen from pig slurry via struvite: a study on magnesium oxide and related by-products. Water Res 84:286–294

    Article  Google Scholar 

  • Ruiz B, de Benito A, Rivera JD, Flotats X (2016) Assessment of different pre-treatment methods for the removal of limonene in citrus waste and their effect on methane potential and methane production rate. Waste Manag Res 34:1249–1257

    Article  Google Scholar 

  • Ruiz-Sánchez J, López A, Riau V, Prenafeta-Boldú FX, Fernández B, Flotats X (2017) Biogas production from N-rich wastes: SAOB-HM enriched digester versus hydrophobic membrane assisted digester. Proceedings of the 15th World Congress on Anaerobic Digestion, Beijing (China), 17–20 October 2017, pp 695–698

    Google Scholar 

  • Ruiz-Sánchez J, Campanaro S, Guivernau M, Fernández B, Prenafeta-Boldú FX (2018) Effect of ammonia on the active microbiome and metagenome from stable full-scale digesters. Bioresour Technol 250:513–522

    Article  Google Scholar 

  • Scarlat N, Dallemand JF, Fahl F (2018) Biogas: developments and perspectives in Europe. Renew Energy 129:457–472

    Article  Google Scholar 

  • Schnürer A, Nordberg A (2008) Ammonia, a selective agent for methane production by syntrophic acetate oxidation at mesophilic temperature. Water Sci Technol 57:735–740

    Article  Google Scholar 

  • Schnürer A, Houwen FP, Svensson BH (1994) Mesophilic syntrophic acetate oxidation during methane formation by a triculture at high ammonium concentration. Arch Microbiol 162:70–74

    Article  Google Scholar 

  • Silvestre G, Rodriguez-Abalde A, Fernández B, Flotats X, Bonmatí A (2011) Biomass adaptation over anaerobic co-digestion of sewage sludge and trapped grease waste. Bioresour Technol 102:6830–6836

    Article  Google Scholar 

  • Simioni M, Kentish SE, Stevens GW (2011) Polymeric alternatives to teflon for membrane stripping. Energy Procedia 4:659–665

    Article  Google Scholar 

  • Singhania RR, Patel AK, Christophe G, Fontanille P, Larroche C (2013) Biological upgrading of volatile fatty acids, key intermediates for the valorization of biowaste through dark anaerobic fermentation. Bioresour Technol 145:166–174

    Article  Google Scholar 

  • Skiadas IV, Gavala HN, Lyberatos G (2000) Modelling of the periodic anaerobic baffled reactor (PABR) based on the retailing factor concept. Water Res 34:3691–3905

    Article  Google Scholar 

  • Smil V (2011) Nitrogen cycle and world food production. World Agr 2:9–13

    Google Scholar 

  • Spirito CM, Richter H, Rabaey K, Stams AJM, Angenent LT (2014) Chain elongation in anaerobic reactor microbiomes to recover resources from waste. Curr Opin Biotechnol 27:115–122

    Article  Google Scholar 

  • Steinfeld H, Gerber P, Wassenaar T, Castel V, Rosales M, de Haan C (2006) Livestock long shadow; environmental issues and options. Food and Agriculture organization of the United Nations, FAO Publishing Management Service, Rome

    Google Scholar 

  • Stopp P, Weichgrebe D, Rosenwinkel KH (2017) Innovative digestate evaporation for nutrients recovery and post-processing. Proceedings of the 15th World Congress on Anaerobic Digestion, Beijing (China), 17–20 October 2017, pp 657–660

    Google Scholar 

  • Tauseef SM, Abbasi T, Abbasi SA (2013) Energy recovery from wastewaters with high-rate anaerobic digesters. Renew Sustain Energy Rev 19:704–741

    Article  Google Scholar 

  • Thrän D, Persson T, Svensson M, Daniel-Gromke J, Ponitka J, Seiffert M, Baldwin J, Kranzl L, Schipfer F, Matzenberger J, Devriendt N, Dumont M, Dahl J, Bochmann G (2014) Biomethane—status and factors affecting market development and trade. In: Junginger M, Baxter D (eds) IEA Task 40 and Task 37 Joint Study. IEA Bioenergy

    Google Scholar 

  • Turner C, Burton CH (1997) The inactivation of viruses in pig slurry: a review. Bioresour Technol 61:9–20

    Article  Google Scholar 

  • Van Brakel J (1980) The Ignis Fatuus of biogas. Small-scale anaerobic digesters (“biogas plants”): a critical review of the pre-1970 literature. Delft University Press, Delft, The Netherlands. http://repository.tudelft.nl/view/ir/uuid:06a18017-8de3-4849-9337-dc41944555d6. Accessed 8 June 2018

  • Van Lier JB (2008) High-rate anaerobic wastewater treatment: diversifying from end-of-pipe treatment to resource-oriented conversion techniques. Water Sci Technol 57:1137–1148

    Article  Google Scholar 

  • Van Lier JB, Hulsbeek J, Stams AJ, Lettinga G (1993) Temperature susceptibility of thermophilic methanogenic sludge: implication for reactor start-up and operation. Bioresour Technol 43:227–235

    Article  Google Scholar 

  • Vandeviere P, De Baere L, Verstraete W (2003) Types of anaerobic digester for solid wastes. In: Mata-Álvarez J (ed) Biomethanization of the organic fraction of municipal solid wastes. IWA, London, pp 11–140

    Google Scholar 

  • Vaneeckhaute C, Belia E, Meers E, Tack FMG, Vanrolleghem PA (2018) Nutrient recovery from digested waste: towards a generic roadmap for setting up an optimal treatment train. Waste Manag 78:385–392

    Article  Google Scholar 

  • Vavilin VA, Fernandez B, Palatsi J, Flotats X (2008) Hydrolysis kinetics in anaerobic degradation of particulate organic material: an overview. Waste Manag 28:939–951

    Article  Google Scholar 

  • Wäeger-Baumann F, Fuchs W (2012) The application of membrane contactors for the removal of ammonium from anaerobic digester effluent. Sep Sci Technol 47:1436–1442

    Article  Google Scholar 

  • Walla C, Schneeberger W (2008) The optimal size for biogas plants. Biomass Bioenergy 32:551–557

    Article  Google Scholar 

  • Wang S, Jenab U, Dasa KC (2018) Biomethane production potential of slaughterhouse waste in the United States. Energ Convers Manage 173:143–157

    Article  Google Scholar 

  • Yousuf A, Bonk F, Bastidas-Oyanedel JR, Schmidt JE (2016) Recovery of carboxylic acids produced during dark fermentation of food waste by adsorption on Amberlite IRA-67 and activated carbon. Bioresour Technol 217:137–140

    Article  Google Scholar 

  • Yousuf A, Bastidas-Oyanedel JR, Schmidt JE (2018) Effect of total solid content and pretreatment on the production of lactic acid from mixed culture dark fermentation of food waste. Waste Manag 77:516–521

    Article  Google Scholar 

  • Zema DA (2017) Planning the optimal site, size, and feed of biogas plants in agricultural districts. Biofuels Bioprod Biorefin 11:454–471

    Article  Google Scholar 

  • Zhou M, Yan B, Wong JWC, Zhang Y (2018) Enhanced volatile fatty acids production from anaerobic fermentation of food waste: a mini-review focusing on acidogenic metabolic pathways. Bioresour Technol 248:68–78

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Flotats .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Flotats, X. (2019). Biogas: Perspectives of an Old Technology. In: Bastidas-Oyanedel, JR., Schmidt, J. (eds) Biorefinery. Springer, Cham. https://doi.org/10.1007/978-3-030-10961-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10961-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10960-8

  • Online ISBN: 978-3-030-10961-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics