Skip to main content

Radiogenic and Stable Isotopes, Fluid Inclusions

  • Chapter
  • First Online:
  • 815 Accesses

Part of the book series: SpringerBriefs in World Mineral Deposits ((BRIEFSWMD))

Abstract

Samarium and Nd isotope data are used to provide information on the source of melts, as well as to determine the age of the rocks. Several samples yield extreme high 147Sm/144Nd ratios of >0.3, indicating extreme fractionation of the REE. This is also reflected in their calculated present day εNd values of εNdt = 0 at >40.0. The reason for the high degree of REE fractionation remains ambiguous but is suggested either to be related to the late stage replacement processes and related element redistribution (e.g., feldspar replacement, replacement of the primary Nb-Ta-Sn-oxides), or to reflect the mineralogical composition of the samples. The calculated fractionation factor for the LCT pegmatites are compared to the geological background values for possible source rocks from the Zimbabwe, Yilgarn and Pilbara Craton. It is obvious that the samples that exhibit elevated 147Sm/144Nd ratios plot in the field of REE depletion. This further supports the suggestion that late stage replacement processes and related element redistribution affected the LCT pegmatites. Most of the LCT pegmatite samples have Nd isotopic compositions close to depleted mantle, suggesting that they might have been derived directly from a depleted mantle. Analyses of the Li isotope system are increasingly used to trace geological processes in LCT pegmatite systems and involve magmatic or hydrothermal alteration processes. Lithium abundance and isotope composition was determined from selected LCT pegmatite mineral phases (feldspar, quartz, mica, pollucite, petalite, garnet, beryl, tourmaline, spodumene). The δ7Li values range between 0.06 ‰ to 31.92‰. When compared to data from different granitic systems worldwide, the LCT pegmatites display higher δ7Li values than most of the granites. It can be expected during magmatic fractionation that the incompatible Li becomes more enriched in the residual melt or fluid. Fluid inclusions were encountered in almost all thin sections from the Bikita and Mount Tinstone pegmatite (Wodgina). Fluid inclusions of selected mineral phases from the Bikita and Wodgina LCT pegmatites recorded comparable homogenisation temperatures which range from approximately 200–450 °C for Bikita and 200–500 °C for the Wodgina. Quartz and the Li minerals petalite (in Bikita) and spodumene (Wodgina) yield higher temperatures (300–450 °C). Pollucite (Bikita) and apatite (Bikita and Wodgina) exhibit lower entrapment temperatures (200–300 °C). This is in good agreement with the general crystallisation sequence, with most of the quartz, petalite and spodumene representing early stage minerals, whereas apatite and the pollucite from the massive pollucite mineralisation were formed during the main to late stage of the crystallisation. The δ13CCO2 values of fluid inclusions point to a mafic or ultramafic source, either directly from the mantle or MORB, or alternatively from local remobilisation of the surrounding greenstone belt lithologies.

This is a preview of subscription content, log in via an institution.

Buying options

eBook
USD   19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   24.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abduriyim A, Kitawaki H, Furuya M, Schwarz D (2006) “Paraíba”-Type Copper-Bearing Tourmaline from Brazil, Nigeria, and Mozambique: chemical fingerprinting by LA-ICP-MS. Gems and Gemology 42(1):4–21

    Article  Google Scholar 

  • Bachmann K, Seifert T, Magna T, Neßler J, Gutzmer J (2014) Li isotopes and geochemistry of Li–F–Sn greisen from the Zinnwald deposit, Germany. Goldschmidt Conference 2014, Sacramento, USA, abstracts volume, p 93

    Google Scholar 

  • Barnes EM, Weis D, Groat LA (2012) Significant Li isotope fractionation in geochemically evolved rare element-bearing pegmatites from the Little Nahanni Pegmatite Group, NWT, Canada. Lithos 132–133:21–36

    Article  Google Scholar 

  • Bryant CJ, Chappell BW, Bennett VC, McCulloch MT (2004) Lithium isotopic compositions of the New England Batholith: correlations with inferred source rock compositions. Trans R Soc Edinburgh: Earth Sci 95:199–414

    Article  Google Scholar 

  • Carreira PM, Marques JM, Carvalho MR, Capasso G, Grassa F (2010) Mantle derived carbon in Hercynian granites. Stable isotopes signatures and C/He associations in the thermomineral waters, N-Portugal. J Volcanol Geotherm Res 189:49–56

    Article  Google Scholar 

  • DePaolo DJ (1981) Neodymium isotopes in the Colorado Front Range and crust–mantle evolution in the Proterozoic. Nature 291–5812:193–197

    Article  Google Scholar 

  • DePaolo DJ, Wasserburg GJ (1976) Inferences about magma sources and mantle structure from variations of 143Nd/144Nd. Geophys Res Lett 3:743–746

    Article  Google Scholar 

  • Des Marais DJ (2001) Isotopic evolution of the biogeochemical carbon cycle during the Precambrian. Rev Mineral Geochem 43:555–578

    Article  Google Scholar 

  • Deveaud S, Millot R, Villaros A (2015) The genesis of LCT-type granitic pegmatites, as illustrated by lithium isotopes in micas. Chem Geol 411:97–111

    Article  Google Scholar 

  • Dittrich T (2016) Meso- to Neoarchean Lithium-Cesium-Tantalum- (LCT-) pegmatites (Western Australia, Zimbabwe) and a genetic model for the formation of massive pollucite mineralisations. Dissertation Faculty of Geosciences, Geoengineering and Mining, TU Freiberg/Saxony, Germany, 341 pp. http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-228968

  • Hoefs J (2018) Stable isotope geochemistry, 8th edn. Springer, Berlin, p 437

    Book  Google Scholar 

  • Liu XM, Rudnick RL, Hier-Majunder S, Sirbescu MLC (2010) Processes controlling lithium isotopic distribution in contact aureoles: a case study of the Florence County pegmatites, Wisconsin. Geochem Geophys 11:1–21

    Google Scholar 

  • Lüders V, Klemd R, Oberthür T, Plessen P (2015) Different carbon reservoirs of auriferous fluids in African Archean and Proterozoic gold deposits? Constraints from stable carbon isotopic compositions of quartz-hosted CO2-rich fluid inclusions. Mineral Deposit 50:449–454

    Article  Google Scholar 

  • Magna T, Janoušek V, Kohút M, Oberli F, Wiechert U (2010) Fingerprinting sources of orogenic plutonic rocks from Variscan belt with lithium isotopes and possible link to subduction-related origin of some A-type granites. Chem Geol 274:94–107

    Article  Google Scholar 

  • Maloney JS, Nabelek PI, Sirbescu MLC, Halama R (2008) Lithium and its isotopes in tourmaline as indicators of the crystallization process in the San Diego County pegmatites, California, USA. Eur J Mineral 20:905–916

    Article  Google Scholar 

  • Milisenda CC, Liew TC, Hofmann AW, Köhler H (1994) Nd isotopic mapping of the Sri Lanka basement: update, and additional constraints from Sr isotopes. Precambr Res 66:95–110

    Article  Google Scholar 

  • Plessen B, Lüders V (2012) Simultaneous measurements of gas isotopic compositions of fluid inclusion gases (N2, CH4, CO2) using continuous-flow isotope ratio mass spectrometry. Rapid Commun Mass Spectrom 26:1157–1161

    Article  Google Scholar 

  • Richter L, Seifert T, Dittrich T, Schulz B, Hagemann S, Banks D (2015a) Constraints on the magmatic-hydrothermal fluid. Evolution in LCT pegmatites from Mt. Tinstone, Wodgina Pegmatite District, North Pilbara Craton, Western Australia. Mineral resources in a sustainable world, 13th SGA Biennial Meeting 2015 Nancy, Proceedings vol 2, pp 529–532

    Google Scholar 

  • Richter L, Lüders V, Hagemann SG, Seifert T, Dittrich T (2015b) Stable carbon isotopic composition of fluid inclusions from the Archean Bikita LCT pegmatite field. GeoBerlin 2015-Dynamic Earth from Alfred Wegener to today and beyond, 4–7 October 2015, GFZ German Research Centre for Geosciences, Berlin. GFZ Abstracts, pp 310–311. https://doi.org/10.2312/gfz.lis.2015.003

  • Roddaz M, Debat P, Nikema S (2007) Geochemistry of Upper Birimian sediments (major and trace elements and Nd–Sr isotopes) and implications for weathering and tectonic setting of the Late Paleoproterozoic crust. Precambr Res 159:197–211

    Article  Google Scholar 

  • Romer RL, Meixner A, Förster HJ (2014) Lithium and boron in late-orogenic granites—isotopic fingerprints for the source of crustal melts? Geochim Cosmochim Acta 131:98–114

    Article  Google Scholar 

  • Taylor BE, Friedrichsen H (1983) Light and stable isotope systematics of granitic pegmatites from North America and Norway. Chem Geol 41:127–167

    Article  Google Scholar 

  • Teng FZ, McDonough WF, Rudnick RL, Dalpé C, Tomascak PB, Chappell BW, Gao S (2004) Lithium isotopic composition and concentration of the upper continental crust. Geochim Cosmochim Acta 68:4167–4178

    Article  Google Scholar 

  • Teng FZ, McDonough WF, Rudnick RL, Walker RJ, Sirbescu MLC (2006) Lithium isotopic systematics of granites and pegmatites from the Black Hills, South Dakota. Am Mineral 91:1488–1498

    Article  Google Scholar 

  • Teng FZ, Rudnick RL, McDonough WF, Wu FY (2009) Lithium isotopic systematics of A-type granites and their mafic enclaves: Further constraints on the Li isotopic composition of the continental crust. Chem Geol 262:370–379

    Article  Google Scholar 

  • Tomascak PB (2004) Developments in the understanding and application of Lithium isotopes in the earth and planetary sciences. Rev Mineral Geochem 55:153–195

    Article  Google Scholar 

  • Wenger M, Armbruster T (1991) Crystal chemistry of lithium: oxygen coordination and bonding. Eur J Mineral 3:387–399

    Article  Google Scholar 

  • Wunder B, Meixner A, Romer RL, Feenstra A, Schettler G, Heinrich W (2007) Lithium isotope fractionation between Li-bearing staurolite, Li mica and aqueous fluids; an experimental study. Chem Geol 238:277–290

    Article  Google Scholar 

  • Zenk M, Schulz B (2004) Zoned Ca-amphiboles and related P–T evolution in metabasites from the classical Barrovian metamorphic zones in Scotland. Mineral Mag 68:769–786

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Dittrich .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dittrich, T., Seifert, T., Schulz, B., Hagemann, S., Gerdes, A., Pfänder, J. (2019). Radiogenic and Stable Isotopes, Fluid Inclusions. In: Archean Rare-Metal Pegmatites in Zimbabwe and Western Australia. SpringerBriefs in World Mineral Deposits. Springer, Cham. https://doi.org/10.1007/978-3-030-10943-1_6

Download citation

Publish with us

Policies and ethics