Skip to main content

Dynamic Marketing Model: Optimization of Retailer’s Role

  • Conference paper
  • First Online:
Optimization and Applications (OPTIMA 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 974))

Included in the following conference series:

  • 558 Accesses

Abstract

We study a vertical control distribution channel in which a manufacturer sells a single kind of good to a retailer. The state variables are the cumulative sales and the retailer’s motivation. The manufacturer chooses wholesale price discount while retailer chooses pass-through. We assume that the wholesale price discount increases the retailer’s sale motivation thus improving sales. In contrast to previous settings, we focus on the maximization of retailer’s profit with respect to pass-through. The arising problem is linear with respect to both cumulative sales and the retailer’s motivation, while it is quadratic with respect to wholesale price discount and pass-through. We obtain a complete description of optimal strategies and optimal trajectories. In particular, we demonstrate that the number of switches for change in the type of optimal policy is no more than one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bykadorov, I., Ellero, A., Moretti, E., Vianello, S.: The role of retailer’s performance in optimal wholesale price discount policies. Eur. J. Oper. Res. 194(2), 538–550 (2009)

    Article  MathSciNet  Google Scholar 

  2. Nerlove, M., Arrow, K.J.: Optimal advertising policy under dynamic conditions. Economica 29(144), 129–142 (1962)

    Article  Google Scholar 

  3. Bala, P.K.: A data mining model for investigating the impact of promotion in retailing. In: 2009 IEEE International Advance Computing Conference, IACC 2009, pp. 670–674, 4809092 (2009)

    Google Scholar 

  4. Giri, B.C., Bardhan, S.: Coordinating a two-echelon supply chain with price and inventory level dependent demand, time dependent holding cost, and partial backlogging. Int. J. Math. Oper. Res. 8(4), 406–423 (2016)

    MathSciNet  Google Scholar 

  5. Giri, B.C., Bardhan, S., Maiti, T.: Coordinating a two-echelon supply chain through different contracts under price and promotional effort-dependent demand. J. Syst. Sci. Syst. Eng. 22(3), 295–318 (2013)

    Article  Google Scholar 

  6. Printezis, A., Burnetas, A.: The effect of discounts on optimal pricing under limited capacity. Int. J. Oper. Res. 10(2), 160–179 (2011)

    Article  MathSciNet  Google Scholar 

  7. Routroy, S., Dixit, M., Sunil Kumar, C.V.: Achieving supply chain coordination through lot size based discount. Mater. Today: Proc. 2(4–5), 2433–2442 (2015)

    Article  Google Scholar 

  8. Ruteri, J.M., Xu, Q.: The new business model for SMEs food processors based on supply chain contracts. In: International Conference on Management and Service Science, MASS 2011, 5999355 (2011)

    Google Scholar 

  9. Sang, S.: Bargaining in a two echelon supply chain with price and retail service dependent demand. Eng. Lett. 26(1), 181–186 (2018)

    Google Scholar 

  10. Bykadorov, I., Ellero, A., Moretti, E.: Minimization of communication expenditure for seasonal products. RAIRO Oper. Res. 36(2), 109–127 (2002)

    Article  MathSciNet  Google Scholar 

  11. Bykadorov, I., Ellero, A., Funari, S., Moretti, E.: Dinkelbach approach to solving a class of fractional optimal control problems. J. Optim. Theory Appl. 142(1), 55–66 (2009)

    Article  MathSciNet  Google Scholar 

  12. Bykadorov, I.A., Kokovin, S.G., Zhelobodko, E.V.: Product diversity in a vertical distribution channel under monopolistic competition. Autom. Remote Control 75(8), 1503–1524 (2014)

    Article  MathSciNet  Google Scholar 

  13. Bykadorov, I., Ellero, A., Funari, S., Kokovin, S., Pudova, M.: Chain store against manufacturers: regulation can mitigate market distortion. In: Kochetov, Y., Khachay, M., Beresnev, V., Nurminski, E., Pardalos, P. (eds.) DOOR 2016. LNCS, vol. 9869, pp. 480–493. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44914-2_38

    Chapter  Google Scholar 

  14. Antoshchenkova, I.V., Bykadorov, I.A.: Monopolistic competition model: the impact of technological innovation on equilibrium and social optimality. Autom. Remote Control 78(3), 537–556 (2017)

    Article  MathSciNet  Google Scholar 

  15. Bykadorov, I.: Monopolistic competition model with different technological innovation and consumer utility levels. In: CEUR Workshop Proceeding 1987, pp. 108–114 (2017)

    Google Scholar 

  16. Bykadorov, I., Kokovin, S.: Can a larger market foster R&D under monopolistic competition with variable mark-ups? Res. Econ. 71(4), 663–674 (2017)

    Article  Google Scholar 

  17. Bykadorov, I., Gorn, A., Kokovin, S., Zhelobodko, E.: Why are losses from trade unlikely? Econ. Lett. 129, 35–38 (2015)

    Article  MathSciNet  Google Scholar 

  18. Seierstad, A., Sydsæter, K.: Optimal Control Theory with Economic Applications. North Holland, Amsterdam (1987)

    Google Scholar 

Download references

Acknowledgments

The work was supported in part by the Russian Foundation for Basic Research, projects 16-01-00108, 16-06-00101 and 18-010-00728, by the program of fundamental scientific researches of the SB RAS No I.5.1, project 0314-2016-0018, and by the Russian Ministry of Science and Education under the 5-100 Excellence Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Bykadorov .

Editor information

Editors and Affiliations

A Appendix

A Appendix

1.1 A.1 Assumptions About the Input Data of the Model

In this Section we show (4) and (5).

The Choice of Pass-Through Upper Boundary. The choice of \(B_2\) is carried out from the following considerations. It is clear that the retailer can not receive a negative profit. We will assume that in the “most unfavorable” case for the retailer, i.e., when \(\beta (t)=B_2 \ \forall t \in [t_1, t_2],\) the profit is zero, i.e.,

$$\begin{aligned} \alpha p\int \limits _{t_1}^{t_2}(1-B_2)\dot{x}(t)dt= \alpha p(1-B_2)(x(t_2)-x(t_1))=0. \end{aligned}$$

Hence, since \(x(t_1)=0,\) we obtain \(\alpha p(1-B_2)=0.\) Therefore, \(B_2=1.\)

Thus, (4) holds.

The Concavity of Under the Constant Pass-Through. Let the control \(\beta (t)\) be constant, i.e., \(\beta (t)=\overline{\beta }\ \forall t\in [t_1,t_2].\) This means that the wholesale price is constant throughout the sales period. Then it makes sense to assume that buyers “forget” about the discount provided by the firm (and retailer). We assume that in this case the function x(t) is concave, i.e., \(\ddot{x}(t)\le 0 \ \forall t\in [t_1,t_2].\) This happens when the market is mature and saturation occurs. Moreover, since x(t) is accumulated sales, we assume that the coefficients of the model are such that \(\dot{x}(t)\ge 0.\) The latter should be performed, in particular, for any constant control.

Consider the system

$$\begin{aligned} \begin{array}{lcr} \dot{x}(t)=-\theta x(t)+\delta M(t)+\eta _\alpha \overline{\beta }, \\ \dot{M}(t)=\gamma \dot{x}(t)+\varepsilon \varOmega , \\ x(t_1)=0, \ M(t_1)=\overline{M}. \end{array} \end{aligned}$$
(11)

We get

$$\begin{aligned} \ddot{x}(t)=-\theta \dot{x}(t)+\delta \dot{M}(t)= -a\dot{x}(t) + \delta \varepsilon \varOmega , \end{aligned}$$
(12)

If \(a=0\) then it is not possible to obtain concavity of x(t) due to (12).

Let \(a\ne 0.\) Then we get from (11)

$$\begin{aligned} x(t)=\displaystyle \frac{C(\overline{\beta })}{a^2}\cdot (1-e^{a(t_1-t)})+\frac{\delta \varepsilon \varOmega }{a}(t-t_1), \end{aligned}$$
(13)

where \(C(\overline{\beta })=a\delta \overline{M}+b\overline{\beta }-c.\)

Due to (13), \(\ddot{x}(t)=-C(\overline{\beta })e^{a(t_1-t)}.\) So the cumulative sales function is concave for every \(\overline{\beta } \in [B_1,1]\) if and only if \(C(\overline{\beta })\ge 0 \ \forall \overline{\beta } \in [B_1,1],\) i.e.,

$$\begin{aligned} a\delta \overline{M}+b\overline{\beta }\ge c \ \forall \overline{\beta } \in [B_1,1]. \end{aligned}$$
(14)

Note that (14) can be only if the condition

$$\begin{aligned} a>0 \end{aligned}$$
(15)

holds. Moreover if (15) holds then (14) is true if and only if

$$\begin{aligned} a\delta \overline{M}+b B_1\ge c \end{aligned}$$
(16)

holds. Now we get (5) by substituting (6) to (16). Remark that assumption (16) implies (15).

1.2 A.2 Solution of Retailer’s Problem

Equivalent Problem. Let us introduce the new control

$$\begin{aligned} u(t)=\beta (t)-1\le 0 \end{aligned}$$

and the new state variable

$$\begin{aligned} y(t)=-\theta x(t)+\delta M(t)+\eta _\alpha . \end{aligned}$$

Then the Retailer’s problem can be rewritten as

$$\begin{aligned} \begin{array}{l} -\alpha p \int \limits _{t_1}^{t_2}u(t)(y(t)+\eta _\alpha u(t))dt \longrightarrow max, \\ \dot{x}(t)=y(t)+\eta _\alpha u(t), \\ \dot{y}(t)= -a y(t)-b u(t)+c, \\ x(t_1)=0, \ \ \ y(t_1)=y_1, \\ u(t)\in [u_1,0]\subseteq [-1,0], \\ \end{array} \end{aligned}$$

where \(u_1=B_1-1<0, \ \ y_1=\delta \overline{M}+\eta _\alpha >0\) while definition of ab and c see in (6), (7) and (8). Note that

$$\begin{aligned} a y_1+b u_1-c = a\left( \delta \overline{M}+\eta _\alpha B_1\right) -c. \end{aligned}$$

So due to (16) we get

$$\begin{aligned} a y_1+b u_1-c \ge 0. \end{aligned}$$
(17)

Solution of Equivalent Problem. Consider the Hamiltonian function

$$\begin{aligned} H=-p\alpha (y(t)+\eta _\alpha u(t))u(t)+z_0(t)(y(t)+\eta _\alpha u(t))+z(t)( -a y(t)-b u(t)+c) \end{aligned}$$

and the Lagrangian function

$$\begin{aligned} L=H+\mu _1(t)(u(t)-u_1)-\mu _2(t)u(t). \end{aligned}$$

Due to the Pontryagin Maximum Principle one has that if \(u^*(t)\) is the optimal control and \(x^*(t), y^*(t)\) are optimal state variables, then continuous and piece-wise continuously differentiable functions \(z_0(t)\) and z(t) and piece-wise continuous functions \(\mu _1(t)\) and \(\mu _2(t)\) must exist such that (cf. p. 546 of [1])

$$\begin{aligned} \dot{z_0}(t)= - \frac{\partial L^*}{\partial x}, \ \ z_0(t_2)=0, \ \ \dot{z}(t)= - \frac{\partial L^*}{\partial y}, \ \ z(t_2)=0, \ \ \frac{\partial L^*}{\partial u}=0, \end{aligned}$$
(18)

where, as usual, \(L^*=L(y^*,x^*,u^*,z,z_0,\mu _1,\mu _2)\); moreover slackness complementary conditions

$$\begin{aligned} \mu _1(t)\ge 0, \ \ \mu _1(t)(u^*(t)-u_1)=0, \ \ \mu _2(t)\ge 0, \ \ \mu _2(t)u^*(t)=0 \end{aligned}$$
(19)

hold. Note that in our case \(\displaystyle \frac{\partial L^*}{\partial x}\equiv 0.\) Therefore from (18) we get \( z_0(t)\equiv 0. \) So equations \(\dot{z}(t)= - \displaystyle \frac{\partial L^*}{\partial y}\) and \(\displaystyle \frac{\partial L^*}{\partial u}=0\) in (18) are

$$\begin{aligned} \dot{z}(t)=a z(t)+ p\alpha u^*(t), \end{aligned}$$
(20)
$$\begin{aligned} \mu _1(t)-\mu _2(t)=p\alpha y^*(t)+b z(t)+2p\alpha \eta _\alpha u^*(t). \end{aligned}$$
(21)

Lemma 1

Functions \(\mu _1(t)\) and \(\mu _2(t)\) are continuous.

Proof

(Cf. p. 546 of [1].). Function \(u^*\) is continuous since the Hamiltonian function H is strictly concave w.r.t. u (see e.g. p. 86 of [18]). So also \(\mu _1(t)-\mu _2(t)\) are continuous due to (21). From (19) we get \(\mu _1(t)(u^*(t)-u_1)=\mu _2(t)u^*(t)\) therefore \((\mu _1(t)-\mu _2(t))u^*(t)=\mu _1u_1.\) Thus, functions \(\mu _1(t)\) and \(\mu _2(t)\) are continuous.

Lemma 2

\(\mu _2(t)=0 \ \forall t \in [t_1,t_2].\)

Proof

(Cf. pp. 546–547 of [1].). Suppose, conversely, that \(\exists \ \tilde{t} \in (t_1,t_2): \mu _2(\tilde{t})>0.\) Due to Lemma 1, an interval exists where \(\mu _2\) is positive. Let \((\rho _1,\rho _2) \subset (t_1,t_2)\) be the interval of maximum length such that

$$\begin{aligned} \mu _2(t)>0, \ t \in (\rho _1,\rho _2). \end{aligned}$$
(22)

Due to (19), \(u^*(t)=\mu _1(t)=0 \ \forall t \in (\rho _1,\rho _2).\) Hence in \((\rho _1,\rho _2)\) (21) becomes

$$\begin{aligned} \mu _2(t)=-p\alpha y^*(t)-b z(t)=-p\alpha \left( C_y e^{-a t}+\frac{c}{a}\right) -b C_z e^{a t}, \end{aligned}$$
(23)

where

$$\begin{aligned} C_y=\left( y(\rho _1) -\displaystyle \frac{c}{a}\right) e^{a\rho _1}, \ \ C_z=z(\rho _2)e^{-a\rho _2}. \end{aligned}$$
(24)

Let us consider the all possible cases.

  • Let \(\rho _1=t_1,\rho _2=t_2.\) Since \(y(t_1)=y_1>0, z(t_2)=0,\) we get from (23), (24) and (15)

    $$\begin{aligned} \mu _2(t)=-p\alpha \left( y_1 e^{a (t_1-t)}+\frac{c}{a}\cdot \left( 1-e^{a (t_1-t)}\right) \right) <0, \ t \in [t_1,t_2], \end{aligned}$$
    (25)

    But (25) contradicts (19).

  • Let \(\rho _1=t_1,\rho _2<t_2.\) Then

    $$\begin{aligned} \mu _2(t_1)>0, \ \mu _2(\rho _2)=0 \end{aligned}$$
    (26)

    and, moreover, for \( t \in [t_1,\rho _2]\) we get

    $$\begin{aligned} \mu _2(t)=-p\alpha \left( y_1 e^{a (t_1-t)}+\frac{c}{a}\cdot \left( 1-e^{a (t_1-t)}\right) \right) -a\eta _\alpha z(\rho _2)e^{a(t-\rho _2)}. \end{aligned}$$
    (27)

    Hence to keep (22) we need

    $$\begin{aligned} z(\rho _2)<0. \end{aligned}$$
    (28)

    We get from (27)

    $$\begin{aligned} \dot{\mu }_2(t)=a^2 \cdot \left( p\alpha \left( a y_1 -c\right) e^{a (t_1-t)} -\eta _\alpha z(\rho _2)e^{a(t-\rho _2)}\right) , \ t \in [t_1,\rho _2]. \end{aligned}$$
    (29)

    From (17), (28) and (29) we get \(\dot{\mu }_2(t)>0, \ t \in [t_1,\rho _2],\) which contradicts (26).

  • Let \(\rho _1<t_1,\rho _2=t_2.\) Then

    $$\begin{aligned} \mu _2(\rho _1)=0, \ \mu _2(t_2)>0 \end{aligned}$$
    (30)

    and

    $$\begin{aligned} \mu _2(t)=-p\alpha \left( y(\rho _1)e^{a(\rho _1-t)} +\frac{c}{a}\cdot \left( 1-e^{a(\rho _1-t)} \right) \right) , \ t \in [\rho _1,t_2]. \end{aligned}$$
    (31)

    Moreover, (31) becomes due to (30)

    $$\begin{aligned} \mu _2(t)=-\frac{p\alpha c}{a}\cdot \left( 1-e^{a(\rho _1-t)} \right) , \ t \in [\rho _1,t_2]. \end{aligned}$$
    (32)

    From (32) we get \(\dot{\mu }_2(t)<0, \ t \in [\rho _1,t_2],\) which contradicts (30).

  • Let \(\rho _1<t_1,\rho _2<t_2.\) Then

    $$\begin{aligned} \mu _2(\rho _1)=\mu _2(\rho _2)=0. \end{aligned}$$
    (33)

    Moreover

    $$\begin{aligned} \ddot{\mu }_2(t)=a^2\left( -p\alpha C_y e^{-a t}-a\eta _\alpha C_z e^{a t}\right) =a^2\left( \mu _2(t)+\frac{\delta \varepsilon \varOmega }{a}\right) , \ t \in (\rho _1,\rho _2). \end{aligned}$$

    Hence, due to (15) and (22), we get \(\ddot{\mu }_2(t)>0, \ t \in (\rho _1,\rho _2),\) i.e., function \(\mu _2(t)\) is strictly convex in \([\rho _1,\rho _2]\) which contradicts (22) and (33).

Thus, (19) and (21) are

$$\begin{aligned} \mu _1(t)\ge 0, \ \ \mu _1(t)(u^*(t)-u_1)=0, \end{aligned}$$
(34)
$$\begin{aligned} \mu _1(t)=p\alpha y^*(t)+b z(t)+2p\alpha \eta _\alpha u^*(t). \end{aligned}$$
(35)

Lemma 3

Let for some \(\rho _0<\rho _1<\rho _2<\rho _3\) be

$$\begin{aligned} \mu _1(t) \ \left\{ \begin{array}{ll} =0 \ &{} t\in [\rho _0,\rho _1], \\ >0 \ &{} t\in (\rho _1,\rho _2), \\ =0 \ &{} t\in [\rho _2,\rho _3]. \\ \end{array} \right. \end{aligned}$$
(36)

Then

$$\begin{aligned} u^*(t)=\left\{ \begin{array}{ll} E_2t^2+D_1t+D_0 \ &{} t\in [\rho _0,\rho _1], \\ u_1 \ &{} t\in [\rho _1,\rho _2], \\ E_2t^2+E_1t+E_0 \ &{} t\in [\rho _2,\rho _3], \\ \end{array} \right. \end{aligned}$$
(37)

where \(E_2=\displaystyle \frac{a c}{4\eta _\alpha }\) while \(D_1,D_0,E_1,E_0\) are some constants.

Proof

Due to (34) and (35), we get from (36)

$$\begin{aligned} u^*(t)=\left\{ \begin{array}{ll} -\displaystyle \frac{1}{2p\alpha \eta _\alpha }\cdot \left( p\alpha y^{*}(t)+b z(t)\right) \ &{} t\in [\rho _0,\rho _1], \\ u_1 \ &{} t\in [\rho _1,\rho _2], \\ -\displaystyle \frac{1}{2p\alpha \eta _\alpha }\cdot \left( p\alpha y^{*}(t)+b z(t)\right) \ &{} t\in [\rho _2,\rho _3].\\ \end{array} \right. \end{aligned}$$

Hence \(y^{*}(t),z(t)\) and \(u^*(t)\) in \([\rho _0,\rho _1]\cup [\rho _2,\rho _3]\) satisfy

$$\begin{aligned} \left\{ \begin{array}{l} \dot{y}^*(t)= -a y^*(t)-b u^*(t)+c, \\ \dot{z}(t)=a z(t)+ p\alpha u^*(t), \\ u^*(t)= -\displaystyle \frac{1}{2p\alpha \eta _\alpha }\cdot \left( p\alpha y^{*}(t)+bz(t)\right) . \\ \end{array} \right. \end{aligned}$$
(38)

In \([\rho _0,\rho _1]\) and in \([\rho _2,\rho _3],\) the solution of (38) has a form

$$\begin{aligned} \left\{ \begin{array}{l} y^{*}(t)=-\displaystyle \frac{ac}{4}\cdot t^{2}+C_{1}\cdot t+C_{2}, \\ z(t)=\displaystyle \frac{p\alpha }{b}\cdot \left( -\displaystyle \frac{ac}{4}\cdot t^{2}+\left( C_{1}-c\right) \cdot t+\displaystyle \frac{2C_{1}-2c a+aC_{2}}{a}\right) , \\ u^{*}(t)=\displaystyle \frac{1}{b}\cdot {\displaystyle \left( \frac{a^{2}c}{4}\cdot t^{2}+{\displaystyle \frac{a\left( c-2C_{1}\right) }{2}\cdot t-\left( C_{1}-c+aC_{2}\right) }\right) }. \\ \end{array} \right. \end{aligned}$$
(39)

Hence (37) holds.

Note that \(y^{*}(t)\) and z(t) in \([\rho _1,\rho _2]\) satisfy

$$\begin{aligned} \left\{ \begin{array}{l} \dot{y}^*(t)= -a y^*(t)-b u_1+c, \\ \dot{z}(t)=a z(t)+ p\alpha u_1, \\ \end{array} \right. \end{aligned}$$
(40)

i.e.,

$$\begin{aligned} \left\{ \begin{array}{l} y^{*}(t)=C_y\cdot e^{-at}+\displaystyle \frac{c-bu_{1}}{a}, \\ z(t)= C_z e^{at}-\displaystyle \frac{p\alpha u_{1}}{a}, \\ \end{array} \right. \end{aligned}$$
(41)

where

$$\begin{aligned} C_y=\left( y(\rho _1) -\displaystyle \frac{c-b u_1}{a}\right) e^{a\rho _1}, \ \ C_z=\left( z(\rho _2)+\frac{p\alpha u_1}{a}\right) e^{-a\rho _2}. \end{aligned}$$

Lemma 4

Either \(\mu _1(t)=0 \ \forall t \in [t_1,t_2]\) or only one interval \((\rho _1,\rho _2) \subset [t_1,t_2]\) exists such that \(\mu _1(t)>0, \ t \in (\rho _1,\rho _2).\)

Proof

Due to Lemma 3, if for some \(t_1 \le \rho _0<\rho _1<\rho _2<\rho _3\le t_2\) (37) holds, then (see (39)) \(u^{*}(t)=u_1 \ \forall t \in [\rho _1,\rho _2]\) while function \(u^{*}(t)\) is strictly larger than \(u_1\) and strictly convex in \([\rho _0,\rho _1] \cup [\rho _2,\rho _3].\) Hence function \(u^{*}(t)\) strictly decreases in \([\rho _0,\rho _1]\) and strictly increases in \([\rho _2,\rho _3].\) Hence function \(u^{*}(t)\) strictly decreases in \([t_1,\rho _1]\) and strictly increases in \([\rho _2,t_2].\) Hence \(\mu _1(t)=0 \ \forall t \in [t_1,\rho _1] \cup [\rho _2,t_2].\)

From Lemmas 3 and 4 we get

Corollary 1

The optimal control \(u^*\) has the form

$$\begin{aligned} u^*(t)=\left\{ \begin{array}{ll} E_2t^2+D_1t+D_0 \ &{} t\in [t_1,\rho _1], \\ u_1 \ &{} t\in [\rho _1,\rho _2], \\ E_2t^2+E_1t+E_0 \ &{} t\in [\rho _2,t_2], \\ \end{array} \right. \end{aligned}$$
(42)

where \(E_2=\displaystyle \frac{a^2 c}{4b}\) while \(D_1,D_0,E_1,E_0\) are some constants.

Lemma 5

The optimal control can has no more than one switch.

Proof

Let, by contradiction,

$$\begin{aligned} t_1<\rho _1<\rho _2<t_2 \end{aligned}$$
(43)

and

$$\begin{aligned} y^{*}\left( t\right) =\left\{ \begin{array}{ll} -\displaystyle \frac{ac}{4}\cdot t^{2}+C_{1}\cdot t+C_{2} \ &{} t\in [t_1,\rho _1], \\ y^{*}\left( \rho _{1}\right) \cdot e^{a\left( \rho _{1}-t\right) }+\displaystyle \frac{c-bu_{1}}{a}\cdot \left( 1-e^{a\left( \rho _{1}-t\right) }\right) \ &{} t\in [\rho _1,\rho _2], \\ -\displaystyle \frac{ac}{4}\cdot t^{2}+D_{1}\cdot t+D_{2} \ &{} t\in [\rho _2,t_2],\\ \end{array} \right. \end{aligned}$$
$$\begin{aligned} z\left( t\right) =\left\{ \begin{array}{ll} \displaystyle \frac{p\alpha }{b}\cdot \left( -\frac{ca}{4}\cdot t^{2}+\left( C_{1}-c\right) \cdot t+\left( C_{1}-c\right) \cdot \frac{2}{a}+C_{2}\right) \ &{} t\in [t_1,\rho _1], \\ z(\rho _{2})\cdot e^{a\left( t-\rho _{2}\right) }-\displaystyle \frac{p\alpha u_{1}}{a}\cdot \left( 1-e^{a\left( t-\rho _{2}\right) }\right) \ &{} t\in [\rho _1,\rho _2], \\ \displaystyle \frac{p\alpha }{b}\cdot \left( -\frac{ca}{4}\cdot t^{2}+\left( D_{1}-c\right) \cdot t+\left( D_{1}-c\right) \cdot \frac{2}{a}+D_{2}\right) \ &{} t\in [\rho _2,t_2],\\ \end{array} \right. \end{aligned}$$
$$\begin{aligned} u^{*}\left( t\right) =\left\{ \begin{array}{ll} \displaystyle \frac{1}{b}\cdot \left( \frac{a^{2}c}{4}\cdot t^{2}-\left( C_{1}-\frac{c}{2}\right) a\cdot t-\left( C_{1}-c+aC_{2}\right) \right) \ &{} t\in [t_1,\rho _1], \\ u_{1} \ &{} t\in [\rho _1,\rho _2], \\ \displaystyle \frac{1}{b}\cdot \left( \frac{a^{2}c}{4}\cdot t^{2}-\left( D_{1}-\frac{c}{2}\right) a\cdot t-\left( D_{1}-c+aD_{2}\right) \right) \ &{} t\in [\rho _2,t_2].\\ \end{array} \right. \end{aligned}$$

Since \( y^{*}\left( t_1\right) =y_1\) and \(z\left( t_2\right) =0\) we get

$$\begin{aligned} \left\{ \begin{array}{ll} C_{2}=y_{1}+\displaystyle \frac{ac}{4}\cdot \left( t_{1}\right) ^{2}-C_{1}\cdot t_{1}, &{} \\ D_{2}=\displaystyle \frac{ca}{4}\cdot \left( t_{2}\right) ^{2}-\left( D_{1}-c\right) \cdot t_{2}-\left( D_{1}-c\right) \cdot \frac{2}{a}. &{}\\ \end{array} \right. \end{aligned}$$
(44)

Due to (44) and continuity of \(y^{*}\) and z we get

$$\begin{aligned} \left\{ \begin{array}{ll} y^{*}\left( \rho _{1}\right) =y_{1}-\displaystyle \frac{ac}{4}\cdot \left( \left( \rho _{1}\right) ^{2}-\left( t_{1}\right) ^{2}\right) +C_{1}\cdot \left( \rho _{1}-t_{1}\right) , &{} \\ z\left( \rho _{2}\right) = \displaystyle \frac{p\alpha }{b}\cdot \left( -\frac{ca}{4}\cdot \left( \rho _{2}+t_{2}\right) +D_{1}-c\right) \cdot \left( \rho _{2}-t_{2}\right) . &{}\\ \end{array} \right. \end{aligned}$$
(45)

Due to (44), (45) and continuity of \(u^{*}\) we get

$$\begin{aligned} \left\{ \begin{array}{ll} C_{1}=\displaystyle \frac{1}{z_{1}}\cdot \left( \frac{a^{2}c}{4}\cdot \left( \left( \rho _{1}\right) ^{2}-\left( t_{1}\right) ^{2}\right) +\frac{ac}{2}\cdot \rho _{1}-ay_{1}-bu_{1}+c\right) , &{} \\ D_{1}=\displaystyle \frac{1}{z_{2}}\cdot \left( \frac{a^{2}c}{4}\cdot \left( \left( t_{2}\right) ^{2}-\left( \rho _{2}\right) ^{2}\right) +\frac{ac}{2}\cdot \left( 2t_{2}-\rho _{2}\right) +bu_{1}+c\right) . &{}\\ \end{array} \right. \end{aligned}$$
(46)

where

$$\begin{aligned} \left\{ \begin{array}{ll} z_{1}=a\left( \rho _{1}-t_{1}\right) +1>1, &{} \\ z_{2}=a\left( t_{2}-\rho _{2}\right) +1>1. &{}\\ \end{array} \right. \end{aligned}$$
(47)

Due to (44)–(47) and continuity of \(y^{*}\) and z we get

$$\begin{aligned} \left\{ \begin{array}{ll} e^{a\left( \rho _{1}-\rho _{2}\right) }=-\displaystyle \frac{z_{2}+2+{\displaystyle \frac{L_{2}}{z_{2}}}}{z_{1}-2+{\displaystyle \frac{L_{1}}{z_{1}}}}, &{} \\ e^{a\left( \rho _{1}-\rho _{2}\right) }=-\displaystyle \frac{z_{1}+2+{\displaystyle \frac{L_{1}}{z_{1}}}}{z_{2}-2+{\displaystyle \frac{L_{2}}{z_{2}}}}, &{}\\ \end{array} \right. \end{aligned}$$
(48)

where \(L_{1}:=1+4\cdot {\displaystyle \frac{ay_{1}+bu_{1}-c}{c}}\) and \(L_{2}=1+{\displaystyle \frac{4bu_{1}}{c}}\). Note that

$$\begin{aligned} L_{1}\ge 1 \end{aligned}$$
(49)

due to (17). Let us rewrite (48) as

$$\begin{aligned} \left\{ \begin{array}{ll} e^{a\left( \rho _{1}-\rho _{2}\right) }=-\displaystyle \frac{z_{2}+2+{\displaystyle \frac{L_{2}}{z_{2}}}}{z_{1}-2+{\displaystyle \frac{L_{1}}{z_{1}}}}, &{} \\ \left( z_{1}+{\displaystyle \frac{L_{1}}{z_{1}}}\right) =\pm \left( z_{2}+{\displaystyle \frac{L_{2}}{z_{2}}}\right) . &{}\\ \end{array} \right. \end{aligned}$$
(50)

Let \(z_{1}+{\displaystyle \frac{L_{1}}{z_{1}}}=-\left( z_{2}+{\displaystyle \frac{L_{2}}{z_{2}}}\right) .\) Then due to (50) we get \(e^{a\left( \rho _{1}-\rho _{2}\right) }=1\) in contradiction with (43). Let \(z_{1}+{\displaystyle \frac{L_{1}}{z_{1}}}=z_{2}+{\displaystyle \frac{L_{2}}{z_{2}}}.\) Then due to (50) we get

$$\begin{aligned} e^{a\left( \rho _{1}-\rho _{2}\right) }=-\frac{\left( z_{1}+1\right) ^{2}+L_{1}-1}{\left( z_{1}-1\right) ^{2}+L_{1}-1}. \end{aligned}$$

Since \(z_{1}>1\) and \(a\left( \rho _{1}-\rho _{2}\right) <0\), we get \(\left( z_{1}+1\right) ^{2}+L_{1}-1>0>\left( z_{1}-1\right) ^{2}+L_{1}-1\) and moreover \(\left( z_{1}+1\right) ^{2}+L_{1}-1<-\left( z_{1}-1\right) ^{2}-L_{1}+1,\) i.e., \(L_{1}<-\left( z_{1}\right) ^{2}<-1\), in contradiction with (49).

Due to Lemma 5, only two cases are possible, namely \(\rho _2=t_2\) and \(\rho _1=t_1\).

Lemma 6

(i) If \(\rho _2=t_2\) then the optimal control is

$$\begin{aligned} u^{*}\left( t\right) = {\left\{ \begin{array}{ll} \left( {\displaystyle \frac{a^{2}c}{4b}}\cdot t+T_{1}\left( \rho _{1}\right) \right) \cdot \left( t-\rho _{1}\right) +u_{1}, &{} t\in \left[ t_{1},\rho _{1}\right] , \\ u_{1}, &{} t\in \left[ \rho _{1},t_{2}\right] , \end{array}\right. } \end{aligned}$$

where

$$\begin{aligned} T_{1}\left( \rho _{1}\right) =\displaystyle \frac{a}{4b}\cdot \left( \frac{c+4\left( ay_{1}+bu_{1}-c\right) }{q_{1}+1}-c\cdot \left( at_{1}-1\right) \right) \end{aligned}$$

while \(q_{1}=a\left( \rho _{1}-t_{1}\right) \in \left[ 0;a\left( t_{2}-t_{1}\right) \right] \) is the root of the equation

$$\begin{aligned} \displaystyle e^{q_{1}-a(t_{2}-t_{1})}=\displaystyle \frac{\displaystyle \frac{c}{4}\cdot \left( q_{1}\right) ^{2}+cq_{1}+ay_{1}+bu_{1}}{-bu_{1}\left( q_{1}+1\right) }. \end{aligned}$$

(ii) If \(\rho _1=t_1\) then the optimal control is

$$\begin{aligned} u^{*}\left( t\right) = {\left\{ \begin{array}{ll} u_{1}, &{} t\in \left[ t_{1},\rho _{1}\right] , \\ \left( \displaystyle \frac{a^{2}c}{4b}\cdot t+T_{2}\left( \rho _{2}\right) \right) \left( t-\rho _{2}\right) +B_{1}, &{} t\in \left[ \rho _{1},t_{2}\right] , \end{array}\right. } \end{aligned}$$

where

$$\begin{aligned} T_{2}\left( \rho _{2}\right) =-\displaystyle \frac{a}{4b}\cdot \left( \displaystyle \frac{c+4b\left( B_{1}-1\right) }{q_{2}}+c\cdot \left( at_{2}+1\right) \right) \end{aligned}$$

while \(q_2=a\left( t_{2}-\rho _{2}\right) \in \left[ 0;a\left( t_{2}-t_{1}\right) \right] \) is the root of the equation

$$\begin{aligned} e^{q_{2}-a\left( t_{2}-t_{1}\right) }=-\displaystyle \frac{{\displaystyle \frac{c}{4}}\cdot \left( q_{2}\right) ^{2}+cq_{2}+bu_{1}+c}{\left( q_{2}+1\right) \left( ay_{1}+bu_{1}-c\right) }. \end{aligned}$$

Proof

As in the proof of Lemma 5, we can write the form of \(y^*(t), z(t)\) and \(u^*(t)\). But now we have only one switch. To finish the proof we need only use the conditions \(y^*\left( t_1\right) =y_1, z\left( t_2\right) =0,\) continuity of optimal trajectories and optimal control, and straightforward calculations.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bykadorov, I. (2019). Dynamic Marketing Model: Optimization of Retailer’s Role. In: Evtushenko, Y., Jaćimović, M., Khachay, M., Kochetov, Y., Malkova, V., Posypkin, M. (eds) Optimization and Applications. OPTIMA 2018. Communications in Computer and Information Science, vol 974. Springer, Cham. https://doi.org/10.1007/978-3-030-10934-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10934-9_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10933-2

  • Online ISBN: 978-3-030-10934-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics