Skip to main content

Quasi-analytical Perturbation Analysis of the Generalized Nonlinear Schrödinger Equation

  • Conference paper
  • First Online:
Proceedings of the 5th International Conference on Applications in Nonlinear Dynamics

Part of the book series: Understanding Complex Systems ((UCS))

  • 612 Accesses

Abstract

The Generalized Nonlinear Schrödinger Equation (GNLSE) finds several applications, especially in describing pulse propagation in nonlinear fiber optics. A well-known and thoroughly studied phenomenon in nonlinear wave propagation is that of modulation instability (MI). MI is approached as a weak perturbation to a pump and the analysis is based on preserving those terms linear on the perturbation and disregarding higher-order terms. In this sense, the linear MI analysis is relevant to the understanding of the onset of many other nonlinear phenomena, but its application is limited to the evolution of the perturbation over short distances. In this work, we propose quasi-analytical approximations to the propagation of a perturbation consisting of additive white noise that go beyond the linear modulation instability analysis. Moreover, we show these approximations to be in excellent agreement with numerical simulations and experimental measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Agrawal, Nonlinear Fiber Optics, 5th edn. Optics and Photonics (Academic, New York, 2012)

    Google Scholar 

  2. V.E. Zakharov, Sov. Phys. JETP 35, 908 (1972)

    Google Scholar 

  3. M.A. Ablowitz, P.A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering (Cambridge University Press, Cambridge, 1991)

    Google Scholar 

  4. N. Akhmediev, V. Korneev, Theor. Math. Phys. 69(2), 1089 (1986)

    Article  Google Scholar 

  5. J.M. Dudley, G. Genty, F. Dias, B. Kibler, N. Akhmediev, Opt. Express 17(24), 21497 (2009). https://doi.org/10.1364/OE.17.021497

    Article  Google Scholar 

  6. N. Akhmediev, J.M. Soto-Crespo, A. Ankiewicz, Phys. Rev. A 80, 043818 (2009). https://doi.org/10.1103/PhysRevA.80.043818

    Article  Google Scholar 

  7. N. Akhmediev, A. Ankiewicz, M. Taki, Phys. Lett. A 373(6), 675 (2009). https://doi.org/10.1016/j.physleta.2008.12.036

    Article  Google Scholar 

  8. A. Ankiewicz, J.M. Soto-Crespo, M.A. Chowdhury, N. Akhmediev, J. Opt. Soc. Am. B 30(1), 87 (2013). https://doi.org/10.1364/JOSAB.30.000087

    Article  Google Scholar 

  9. A. Ankiewicz, N. Akhmediev, Phys. Lett. A 378(4), 358 (2014). https://doi.org/10.1016/j.physleta.2013.11.031

    Article  MathSciNet  Google Scholar 

  10. A. Ankiewicz, Y. Wang, S. Wabnitz, N. Akhmediev, Phys. Rev. E 89, 012907 (2014). https://doi.org/10.1103/PhysRevE.89.012907

    Article  Google Scholar 

  11. A. Ankiewicz, D.J. Kedziora, A. Chowdury, U. Bandelow, N. Akhmediev, Phys. Rev. E 93, 012206 (2016). https://doi.org/10.1103/PhysRevE.93.012206

    Article  MathSciNet  Google Scholar 

  12. J. Hult, J. Light. Technol. 25(12), 3770 (2007). https://doi.org/10.1109/JLT.2007.909373

    Article  Google Scholar 

  13. T.B. Benjamin, J.E. Feir, J. Fluid Mech. 27, 417 (1967). https://doi.org/10.1017/S002211206700045X

    Article  Google Scholar 

  14. A. Hasegawa, Phys. Rev. Lett. 24, 1165 (1970). https://doi.org/10.1103/PhysRevLett.24.1165

    Article  Google Scholar 

  15. V. Zakharov, A. Shabat, Sov. Phys. JETP 34, 62 (1972)

    Google Scholar 

  16. A. Hasegawa, W. Brinkman, IEEE J. Quantum Electron. 16(7), 694 (1980). https://doi.org/10.1109/JQE.1980.1070554

    Article  Google Scholar 

  17. P.A.E.M. Janssen, Phys. Fluids 24(1), 23 (1981). https://doi.org/10.1063/1.863242

    Article  Google Scholar 

  18. D. Anderson, M. Lisak, Opt. Lett. 9(10), 468 (1984). https://doi.org/10.1364/OL.9.000468

    Article  Google Scholar 

  19. P.K. Shukla, J.J. Rasmussen, Opt. Lett. 11(3), 171 (1986). https://doi.org/10.1364/OL.11.000171

    Article  Google Scholar 

  20. K. Tai, A. Hasegawa, A. Tomita, Phys. Rev. Lett. 56, 135 (1986). https://doi.org/10.1103/PhysRevLett.56.135

    Article  Google Scholar 

  21. M.J. Potasek, Opt. Lett. 12(11), 921 (1987). https://doi.org/10.1364/OL.12.000921

    Article  Google Scholar 

  22. M. Erkintalo, K. Hammani, B. Kibler, C. Finot, N. Akhmediev, J.M. Dudley, G. Genty, Phys. Rev. Lett. 107, 253901 (2011). https://doi.org/10.1103/PhysRevLett.107.253901

    Article  Google Scholar 

  23. D. Solli, G. Herink, B. Jalali, C. Ropers, Nat. Photonics 6(7), 463 (2012). https://doi.org/10.1038/nphoton.2012.126

  24. D. Grosz, C. Mazzali, S. Celaschi, A. Paradisi, H. Fragnito, IEEE Photonics Technol. Lett. 11(3), 379 (1999). https://doi.org/10.1109/68.748242

    Article  Google Scholar 

  25. D. Grosz, J.C. Boggio, H. Fragnito, Opt. Commun. 171(1–3), 53 (1999). https://doi.org/10.1016/S0030-4018(99)00494-0

  26. K. Hammani, B. Wetzel, B. Kibler, J. Fatome, C. Finot, G. Millot, N. Akhmediev, J.M. Dudley, Opt. Lett. 36(11), 2140 (2011). https://doi.org/10.1364/OL.36.002140

    Article  Google Scholar 

  27. S.T. Sørensen, C. Larsen, U. Møller, P.M. Moselund, C.L. Thomsen, O. Bang, J. Opt. Soc. Am. B 29(10), 2875 (2012). https://doi.org/10.1364/JOSAB.29.002875

    Article  Google Scholar 

  28. J.M. Soto-Crespo, A. Ankiewicz, N. Devine, N. Akhmediev, J. Opt. Soc. Am. B 29(8), 1930 (2012). https://doi.org/10.1364/JOSAB.29.001930

    Article  Google Scholar 

  29. V.E. Zakharov, A.A. Gelash, Phys. Rev. Lett. 111, 054101 (2013). https://doi.org/10.1103/PhysRevLett.111.054101

    Article  Google Scholar 

  30. P. Béjot, B. Kibler, E. Hertz, B. Lavorel, O. Faucher, Phys. Rev. A 83, 013830 (2011). https://doi.org/10.1103/PhysRevA.83.013830

    Article  Google Scholar 

  31. S.M. Hernandez, P.I. Fierens, J. Bonetti, A.D. Sánchez, D.F. Grosz, IEEE Photonics J. 9(5), 1 (2017). https://doi.org/10.1109/JPHOT.2017.2754984

  32. P. Fierens, S. Hernandez, J. Bonetti, D. Grosz, in Proceedings of the 4th International Conference on Applications in Nonlinear Dynamics (ICAND 2016), ed. by V. In, P. Longhini, A. Palacios (Springer, Berlin, 2016), pp. 265–276. https://doi.org/10.1007/978-3-319-52621-8_23

  33. J. Bonetti, S.M. Hernandez, P.I. Fierens, D.F. Grosz, Phys. Rev. A 94, 033826 (2016). https://doi.org/10.1103/PhysRevA.94.033826

    Article  Google Scholar 

  34. V. Zakharov, F. Dias, A. Pushkarev, Phys. Rep. 398(1), 1 (2004). https://doi.org/10.1016/j.physrep.2004.04.002

    Article  MathSciNet  Google Scholar 

  35. A. Picozzi, S. Pitois, G. Millot, Phys. Rev. Lett. 101, 093901 (2008). https://doi.org/10.1103/PhysRevLett.101.093901

    Article  Google Scholar 

  36. A. Picozzi, S. Rica, Opt. Commun. 285(24), 5440 (2012). https://doi.org/10.1016/j.optcom.2012.07.081

  37. A. Picozzi, J. Garnier, T. Hansson, P. Suret, S. Randoux, G. Millot, D. Christodoulides, Phys. Rep. 542(1), 1 (2014). https://doi.org/10.1016/j.physrep.2014.03.002

  38. J.M. Soto-Crespo, N. Devine, N. Akhmediev, Phys. Rev. Lett. 116, 103901 (2016). https://doi.org/10.1103/PhysRevLett.116.103901

    Article  Google Scholar 

  39. B.P.P. Kuo, J.M. Fini, L. Grüner-Nielsen, S. Radic, Opt. Express 20(17), 18611 (2012). https://doi.org/10.1364/OE.20.018611

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge S. Radic for hosting J. B.’s research stay at the Photonic Systems Group, UCSD, financial support from project PIP 2015, CONICET, Argentina, and from ONR Global through the Visiting Scientists Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. I. Fierens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bonetti, J., Hernandez, S.M., Fierens, P.I., Temprana, E., Grosz, D.F. (2019). Quasi-analytical Perturbation Analysis of the Generalized Nonlinear Schrödinger Equation. In: In, V., Longhini, P., Palacios, A. (eds) Proceedings of the 5th International Conference on Applications in Nonlinear Dynamics. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-10892-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10892-2_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10891-5

  • Online ISBN: 978-3-030-10892-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics