Skip to main content

Modulation of NF Kinetics and Axonal Morphology Near the Excavation of the Mouse Optic Nerve

  • Conference paper
  • First Online:
Proceedings of the 5th International Conference on Applications in Nonlinear Dynamics

Part of the book series: Understanding Complex Systems ((UCS))

  • 601 Accesses

Abstract

Neurofilaments (NFs) are the most abundant cytoskeletal structures in the axon and also cargo of axonal transport. Neurofilaments are synthesized in the neuronal cell body and transported bidirectionally along microtubule tracks in the axon with a net anterograde movement toward the nerve terminal. Based on this dual role of neurofilaments as space filling structures and cargo of axonal transport we hypothesize that neurofilament transport velocity regulates axon caliber. In this study, we combine results from a previous study of neurofilament kinetics in optic nerve with published morphometric features of the mouse optic nerve near the excavation to show that the sharp increase in the caliber of optic nerve is consistent with a slowing of neurofilament velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Hildebrand, S. Remahl, H. Persson, C. Bjartmar, Myelinated nerve fibres in the CNS. Prog. Neurobiol. 40, 319–384 (1993)

    Article  Google Scholar 

  2. A. Brown, Slow axonal transport. Encycl. Neurosci. 9, 1–9 (2009)

    Google Scholar 

  3. A. Brown, P. Jung, A critical reevaluation of the stationary axonal cytoskeleton hypothesis. Cytoskeleton (Hoboken, N.J.) 70, 1–11 (2013)

    Article  Google Scholar 

  4. R.A. Nixon, K.B. Logvinenko, Multiple fates of newly synthesized neurofilament proteins: evidence for a stationary neurofilament network distributed nonuniformly along axons of retinal ganglion cell neurons. J. Cell Biol. 102, 647–659 (1986)

    Article  Google Scholar 

  5. R.A. Nixon, P.A. Paskevich, R.K. Sihag, C.Y. Thayer, Phosphorylation on carboxyl terminus domains of neurofilament proteins in retinal ganglion cell neurons in vivo: influences on regional neurofilament accumulation, interneurofilament spacing, and axon caliber. J. Cell Biol. 126, 1031–1046 (1994)

    Article  Google Scholar 

  6. P.N. Hoffman, J.W. Griffin, B.G. Gold, D.L. Price, Slowing of neurofilament transport and the radial growth of developing nerve fibers. J. Neurosci. 5, 2920–2929 (1985)

    Article  Google Scholar 

  7. A. Brown, Slow axonal transport: stop and go traffic in the axon. Nat. Rev. Mol. Cell Biol. 1, 153–156 (2000)

    Article  Google Scholar 

  8. L. Wang, C.L. Ho, D. Sun, R.K. Liem, A. Brown, Rapid movement of axonal neurofilaments interrupted by prolonged pauses. Nat. Cell Biol. 2, 137–141 (2000)

    Article  Google Scholar 

  9. L. Wang, A. Brown, Rapid intermittent movement of axonal neurofilaments observed by fluorescence photobleaching. Mol. Biol. Cell 12, 3257–3267 (2001)

    Article  Google Scholar 

  10. P.C. Monsma, Y. Li, J.D. Fenn, P. Jung, A. Brown, Local regulation of neurofilament transport by myelinating cells. J. Neurosci. 34, 2979–2988 (2014)

    Article  Google Scholar 

  11. J.Q. Trojanowski, V.M.Y. Lee, Aggregation of neurofilament and alpha-synuclein proteins in Lewy bodies: implications for the pathogenesis of Parkinson disease and Lewy body dementia. Arch. Neurol. 55, 151–152 (1998)

    Google Scholar 

  12. C.C.J. Miller, S. Ackerley, J. Brownlees, A.J. Grierson, N.J.O. Jacobsen, P. Thornhill, Axonal transport of neurofilaments in normal and disease states. Cell Mol. Life Sci. 59, 323–330 (2002)

    Article  Google Scholar 

  13. R.E. Schmidt, L.N. Beaudet, S.B. Plurad, D.A. Dorsey, Axonal cytoskeletal pathology in aged and diabetic human sympathetic autonomic ganglia. Brain Res. 769, 375–83 (1997)

    Article  Google Scholar 

  14. A. Brown, L. Wang, P. Jung, Stochastic simulation of neurofilament transport in axons: the ?stop-and-go? hypothesis. Mol. Biol. Cell 16, 4243–4255 (2005)

    Article  Google Scholar 

  15. P. Jung, A. Brown, Modeling the slowing of neurofilament transport along the mouse sciatic nerve. Phys. Biol. 6, 046002 (2009)

    Article  Google Scholar 

  16. N. Trivedi, P. Jung, A. Brown, Neurofilaments switch between distinct mobile and stationary states during their transport along axons. J. Neurosci. 27, 507–516 (2007)

    Article  Google Scholar 

  17. A. Uchida, A. Brown, Arrival, reversal, and departure of neurofilaments at the tips of growing axons. Mol. Biol. Cell 15, 4215–4225 (2004)

    Article  Google Scholar 

  18. C.L. Walker, A. Uchida, Y. Li, N. Trivedi, J.D. Fenn, P.C. Monsma, R.C. Lariviére, J.-P. Julien, P. Jung, A. Brown, Local acceleration of neurofilament transport at nodes of Ranvier [submitted]

    Google Scholar 

  19. R.A. Nixon, Dynamic behavior and organization of cytoskeletal proteins in neurons: reconciling old and new findings. Bioessays 20, 798–807 (1998)

    Article  Google Scholar 

  20. Y. Li, P. Jung, A. Brown, Axonal transport of neurofilaments: a single population of intermittently moving polymers. J. Neurosci. 32(, 746–758 (2012)

    Article  Google Scholar 

  21. A. Yuan, T. Sasaki, M.V. Rao, A. Kumar, V. Kanumuri, D.S. Dunlop, R.K. Liem, R.A. Nixon, Neurofilaments form a highly stable stationary cytoskeleton after reaching a critical level in axons. J. Neurosci. 29, 11316–11329 (2009)

    Article  Google Scholar 

  22. T. Nguyen, P. Jung, Neurofilament proximity to microtubules determines their motility [in preparation]

    Google Scholar 

  23. P. Hertz, Über den gegenseitigen durchschnittlichen Abstand von Punkten, die mit bekannter mittlerer Dichte im Raume angeordnet sind. Math. Ann. 67, 387–398 (1909)

    Google Scholar 

Download references

Acknowledgements

YL acknowledges financial support from the Chinese Natural Science foundation for Young Scientist No. 31601145 and support from Fundamental Research Funds for Central Universities, China (Y. Li). P. Jung is supported by the US National Science Foundation by grant IOS-1656765. We are grateful for extensive discussion with Anthony Brown from the Department of Neuroscience of Ohio State University, Columbus, Ohio.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinyun Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y., Nguyen, T., Jung, P. (2019). Modulation of NF Kinetics and Axonal Morphology Near the Excavation of the Mouse Optic Nerve. In: In, V., Longhini, P., Palacios, A. (eds) Proceedings of the 5th International Conference on Applications in Nonlinear Dynamics. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-10892-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10892-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10891-5

  • Online ISBN: 978-3-030-10892-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics