Skip to main content

Public Good Provision Games on Networks with Resource Pooling

  • Conference paper
  • First Online:
Network Games, Control, and Optimization

Abstract

We consider the interaction of strategic agents and their decision-making process toward the provision of a public good. In this interaction, each user exerts a certain level of effort to improve his own utility. At the same time, the agents are interdependent and the utility of each agent depends not only on his own effort but also on the other agents’ effort level. As the agents have a limited budget and can exert limited effort, question arises as to whether there is advantage to agents pooling their resources. In this study, we show that resource pooling may or may not improve the agents’ utility when they are driven by self-interest. We identify some scenarios where resource pooling does lead to social welfare improvement as compared to without resource pooling. We also propose a taxation–subsidy mechanism that can effectively incentivize the agents to exert socially optimal effort under resource pooling.

This work is supported by the NSF under grant CNS-1422211, CNS-1616575 and CNS-1739517.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is a weaker condition than voluntary participation, which requires that an agent’s utility in the mechanism with everyone else is no less than his utility when unilaterally opting out. It has been shown in [13] that it is generally impossible to simultaneously achieve social optimality, weak budget balance, and voluntary participation.

References

  1. Abolhassani, M., Bateni, M.H., Hajiaghayi, M., Mahini, H., Sawant, A.: Network cournot competition. In: Liu, T.Y., Qi, Q., Ye, Y. (eds.) Web and Internet Economics. pp. 15–29. Springer International Publishing, Cham (2014)

    Google Scholar 

  2. Acemoglu, D., Ozdaglar, A., Tahbaz-Salehi, A.: Networks, shocks, and systemic risk. Working Paper 20931, National Bureau of Economic Research (February 2015). https://doi.org/10.3386/w20931, http://www.nber.org/papers/w20931

  3. Allouch, N.: On the private provision of public goods on networks. Journal of Economic Theory 157, 527–552 (2015)

    Article  MathSciNet  Google Scholar 

  4. Bimpikis, K., Ehsani, S., Ilkiliç, R.: Cournot competition in networked markets. In: Proceedings of the Fifteenth ACM Conference on Economics and Computation. pp. 733–733. EC ’14, ACM, New York, NY, USA (2014). https://doi.org/10.1145/2600057.2602882, http://doi.acm.org/10.1145/2600057.2602882

  5. Bramoullé, Y., Kranton, R.: Games played on networks (2015)

    Google Scholar 

  6. Bramoullé, Y., Kranton, R., D’amours, M.: Strategic interaction and networks. American Economic Review 104(3), 898–930 (2014)

    Article  Google Scholar 

  7. Cai, D., Bose, S., Wierman, A.: On the role of a market maker in networked cournot competition. arXiv preprint arXiv:1701.08896 (2017)

  8. Debreu, G.: A social equilibrium existence theorem. Proceedings of the National Academy of Sciences 38(10), 886–893 (1952)

    Article  MathSciNet  Google Scholar 

  9. Grossklags, J., Radosavac, S., Cárdenas, A.A., Chuang, J.: Nudge: Intermediaries role in interdependent network security. In: International Conference on Trust and Trustworthy Computing. pp. 323–336. Springer (2010)

    Google Scholar 

  10. Jackson, M.O., Zenou, Y.: Games on networks. In: Handbook of game theory with economic applications, vol. 4, pp. 95–163. Elsevier (2015)

    Google Scholar 

  11. Miura-Ko, R.A., Yolken, B., Mitchell, J., Bambos, N.: Security decision-making among interdependent organizations. In: 2008 21st IEEE Computer Security Foundations Symposium. pp. 66–80 (June 2008). https://doi.org/10.1109/CSF.2008.25

  12. Naghizadeh, P., Liu, M.: Closing the price of anarchy gap in the interdependent security game. In: 2014 Information Theory and Applications Workshop (ITA). pp. 1–8 (Feb 2014). https://doi.org/10.1109/ITA.2014.6804216

  13. Naghizadeh, P., Liu, M.: Opting out of incentive mechanisms: A study of security as a non-excludable public good. IEEE Transactions on Information Forensics and Security 11(12), 2790–2803 (2016)

    Article  Google Scholar 

  14. Naghizadeh, P., Liu, M.: On the uniqueness and stability of equilibria of network games. In: Communication, Control, and Computing (Allerton), 2017 55th Annual Allerton Conference on. pp. 280–286. IEEE (2017)

    Google Scholar 

  15. Naghizadeh, P., Liu, M.: Provision of public goods on networks: on existence, uniqueness, and centralities. IEEE Transactions on Network Science and Engineering (2017)

    Google Scholar 

  16. Parameswaran, M., Zhao, X., Whinston, A.B., Fang, F.: Reengineering the internet for better security. Computer 40(1) (2007)

    Article  Google Scholar 

  17. Sharma, S., Teneketzis, D.: A game-theoretic approach to decentralized optimal power allocation for cellular networks. Telecommunication Systems 47(1), 65–80 (Jun 2011). https://doi.org/10.1007/s11235-010-9302-6, https://doi.org/10.1007/s11235-010-9302-6

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mahdi Khalili .

Editor information

Editors and Affiliations

Appendix

Appendix

Proof

(Lemma 2) Let \(\overline{\pmb {m}}\) be a Nash equilibrium of the game induced by proposed mechanism, and \(\overline{{m}}_i = ( \overline{\pmb {x}}^{(i)} , \overline{\pmb {\pi }}^{(i)})\). We need to show that the following term is equal to zero at NE:

$$\begin{aligned} \begin{array}{ll} &{}(\overline{\pmb {x}}^{(i)} - \overline{\pmb {x}}^{(i+1)} )^T diag(\overline{\pmb {\pi }}^{(i)} ) (\overline{\pmb {x}}^{(i)} - \overline{\pmb {x}}^{(i+1)} )\\ &{} - (\overline{\pmb {x}}^{(i+1)} - \overline{\pmb {x}}^{(i+2)} )^T diag(\overline{\pmb {\pi }}^{(i+1)} ) (\overline{\pmb {x}}^{(i+1)} - \overline{\pmb {x}}^{(i+2)})~. \end{array} \end{aligned}$$
(37)

Because \(\overline{\pmb {m}}\) is the Nash equilibrium, we have

$$\begin{aligned} r_i(\hat{X}(m_i , \overline{\pmb {m}}_{-i}),\hat{t}_i( m_i , \overline{\pmb {m}}_{-i}) ) \le r_i( \hat{X}(\overline{\pmb {m}}),\hat{t}_i(\overline{\pmb {m}})), \forall m_i\in \mathcal {M}_i~. \end{aligned}$$
(38)

We substitute \(m_i = (\overline{\pmb {x}}^{(i)} , \pmb {\pi }^{(i)} )\) in (38). Using (17) and (18), we have,

$$\begin{aligned} \begin{array}{ll} r_i(\hat{X}( ( \overline{\pmb {x}}^{(i)} , \pmb {\pi }^{(i)}), \overline{\pmb {m}}_{-i}),\hat{t}_i( ( \overline{\pmb {x}}^{(i)} , \pmb {\pi }^{(i)}), \overline{\pmb {m}}_{-i}) ) =\\ r_i(\hat{X}(\overline{\pmb {m}}),\hat{t}_i( ( \overline{\pmb {x}}^{(i)} , \pmb {\pi }^{(i)}), \overline{\pmb {m}}_{-i}) ) \le r_i( \hat{X}(\overline{\pmb {m}}),\hat{t}_i(\overline{\pmb {m}})), \forall \pmb {\pi }^{(i)}\in R^{N(N-1)}_+~. \end{array} \end{aligned}$$
(39)

Because \(r_i(.,.)\) is a decreasing function in \(t_i\), (39) implies that,

$$\begin{aligned} \begin{array}{ll} \hat{t}_i( ( \overline{\pmb {x}}^{(i)} , \pmb {\pi }^{(i)}), \overline{\pmb {m}}_{-i}) \ge \hat{t}_i(\overline{\pmb {m}}), \forall \pmb {\pi }^{(i)}\in R^{N(N-1)}_+~. \end{array} \end{aligned}$$
(40)

In other words,

$$\begin{aligned} \begin{array}{ll} &{}(\overline{\pmb {\pi }}^{(i+1)} - \overline{\pmb {\pi }}^{(i+2)})^T \underline{\pmb {x}} \\ &{}+ (\overline{\pmb {x}}^{(i)} - \overline{\pmb {x}}^{(i+1)} )^T diag(\overline{\pmb {\pi }}^{(i)} ) (\overline{\pmb {x}}^{(i)} - \overline{\pmb {x}}^{(i+1)} )\\ &{} - (\overline{\pmb {x}}^{(i+1)} - \overline{\pmb {x}}^{(i+2)} )^T diag(\overline{\pmb {\pi }}^{(i+1)} ) (\overline{\pmb {x}}^{(i+1)} - \overline{\pmb {x}}^{(i+2)} )\le \\ &{}(\overline{\pmb {\pi }}^{(i+1)} -\overline{ \pmb {\pi }}^{(i+2)})^T \underline{\pmb {x}} \\ &{}+ (\overline{\pmb {x}}^{(i)} - \overline{\pmb {x}}^{(i+1)} )^T diag(\pmb {\pi }^{(i)} ) (\overline{\pmb {x}}^{(i)} - \overline{\pmb {x}}^{(i+1)} )\\ &{} - (\overline{\pmb {x}}^{(i+1)} - \overline{\pmb {x}}^{(i+2)} )^T diag(\overline{\pmb {\pi }}^{(i+1)} ) (\overline{\pmb {x}}^{(i+1)} - \overline{\pmb {x}}^{(i+2)} )~, \\ &{} \forall \pmb {\pi }^{(i)}\in R^{N\cdot (N-1)}_+~. \end{array} \end{aligned}$$
(41)

By simplifying the above equation, we have

$$\begin{aligned} \begin{array}{ll} (\overline{\pmb {x}}^{(i)} - \overline{\pmb {x}}^{(i+1)} )^T diag(\pmb {\pi }^{(i)} - \overline{\pmb {\pi }}^{(i)} ) (\overline{\pmb {x}}^{(i)} - \overline{\pmb {x}}^{(i+1)} ) \ge 0~, \forall \pmb {\pi }^{(i)}\in R^{N\cdot (N-1)}_+ ~. \end{array} \end{aligned}$$
(42)

Because the above equation is valid for all \(\pmb {\pi }^{(i)}\in R^{N(N-1)}_+\), it implies

$$\begin{aligned} (\overline{\pmb {x}}^{(i)} - \overline{\pmb {x}}^{(i+1)} )^T diag(\overline{\pmb {\pi }}^{(i)} ) (\overline{\pmb {x}}^{(i)} - \overline{\pmb {x}}^{(i+1)}) = 0, ~ \forall i\in V~. \end{aligned}$$
(43)

Therefore, at the NE we have

$$\begin{aligned} \hat{t}_i (\overline{\pmb {m}}) = (\overline{\pmb {\pi }}^{(i+1)} - \overline{\pmb {\pi }}^{(i+2)})^T \underline{\pmb {x}},~ \forall i\in V~. \end{aligned}$$
(44)

   \(\blacksquare \)

Proof

(Theorem 3) Let \(\overline{\pmb {m}}\) be a NE of the proposed mechanism, and \(\overline{{m}}_i = ( \overline{\pmb {x}}^{(i)} , \overline{\pmb {\pi }}^{(i)})\) and \(\underline{\pmb {x}} = \hat{\pmb {x}} (\overline{\pmb {m}})\). By definition, we have

$$\begin{aligned} \begin{array}{ll} r_i(\hat{X}( ( \pmb {x}^{(i)} , \pmb {\pi }^{(i)}), \overline{\pmb {m}}_{-i}) ,\hat{t}_i( ( \pmb {x}^{(i)} , \pmb {\pi }^{(i)}), \overline{\pmb {m}}_{-i}) ) \le r_i( \hat{X}(\overline{\pmb {m}}),\hat{t}_i(\overline{\pmb {m}})),\\ \forall m_i = ( \pmb {x}^{(i)} ,\pmb {\pi }^{(i)} )\in \mathcal {M}_i \end{array} \end{aligned}$$
(45)

Let \(\tilde{\pmb {x}}^{(i)}\) be a vector such that \(\frac{1}{N}(\tilde{\pmb {x}}^{(i)}+\sum _{k\in V-\{i\}} \overline{\pmb {x}}^{(k)}) = 0\). Moreover, we set \(\pmb {\pi }^{(i)}= \pmb {0}\). By Lemma 2, we have

$$\begin{aligned} \begin{array}{ll} \hat{\pmb {x}}( (\tilde{\pmb {x}}^{(i)} , \pmb {0}), \overline{\pmb {m}}_{-i}) =\pmb {0}\\ \hat{X}( (\tilde{\pmb {x}}^{(i)} , \pmb {0}), \overline{\pmb {m}}_{-i}) =diag(B_1,B_2,\cdots ,B_N)\\ \hat{t}_i( ( \tilde{\pmb {x}}^{(i)} , \pmb {0}), \overline{\pmb {m}}_{-i}) = \pmb {0}\\ r_i(\hat{X}( (\tilde{\pmb {x}}^{(i)} , \pmb {0}), \overline{\pmb {m}}_{-i}),\hat{t}_i( ( \tilde{\pmb {x}}^{(i)} , \pmb {0}), \overline{\pmb {m}}_{-i}) ) = v_i^o~. \end{array} \end{aligned}$$
(46)

Equations (45) and (46) together imply that \(r_i(\hat{X}(\overline{\pmb {m}}) , \hat{t}_i(\overline{\pmb {m}})) \ge v_i^o\).    \(\blacksquare \)

Proof

(Theorem 5) Let us assume \(X^*\) is a socially optimal effort profile. Let \( \underline{\pmb {x}} = [x_{12}^*, x_{13}^*, \cdots , x_{1N}^*,x_{21}^*,x_{23}^*\cdots , x^*_{N(N-1)}] \). First we show that there is vector \(\overline{\pmb {l}}_i\) such that

$$\begin{aligned} \underline{\pmb {x}} \in \text {arg} \max \limits _{\pmb {x}\in R^{N(N-1)},A(\pmb {x})\in S} -\overline{\pmb {l}}_i^T \pmb {x}+v_i(A(\pmb {x}))~. \end{aligned}$$
(47)

As \(A(\underline{\pmb {x}})\) is the socially optimal effort profile, we have

$$\begin{aligned} \begin{array}{ll} \underline{\pmb {x}} = \text {arg max}_{\{\pmb {x}\in R^{N(N-1)},A(\pmb {x})\in S\}} \sum _{i=1}^N v_i(A(\pmb {x})) \rightarrow \text{ KKT } \text{ Conditions: }\\ -\left( \sum _{i\in V} \bigtriangledown _{\pmb {x}} v_i(A(\underline{\pmb {x}}))\right) - \pmb {\lambda } + \pmb {\theta } = 0\\ \pmb {\lambda } ^T \underline{\pmb {x}} = 0,\\ \theta _j (-B_j+ \sum _{k\in V-\{ j \} } \underline{x}_{jk} ) = 0\\ \pmb {\lambda } \ge 0\\ \pmb {\theta } = \left[ \underbrace{\theta _1,\cdots ,\theta _1}_{N-1 ~times},\underbrace{ \theta _2,\cdots ,\theta _2}_{N-1 ~times},\cdots ,\underbrace{ \theta _N,\cdots ,\theta _N}_{N-1 ~ times}\right] ^T \ge 0~. \end{array} \end{aligned}$$
(48)

We can define \( \overline{\pmb {l}}_i = \bigtriangledown _{\pmb {x}} v_i(A(\underline{\pmb {x}})) + \pmb {\lambda }/N - \pmb {\theta }/N\). Then we have

$$\begin{aligned} \overline{\pmb {l}}_i - \bigtriangledown _{\pmb {x}} v_i(A(\underline{\pmb {x}})) - \pmb {\lambda }/N + \pmb {\theta }/N = \pmb {0}~, \end{aligned}$$
(49)

which implies that \(\underline{\pmb {x}} , \pmb {\lambda }/N ,\pmb {\theta }/N \) satisfies the KKT conditions for the following optimization problem:

$$\begin{aligned} \begin{array}{ll} \text {arg max}_{\{\pmb {x}\in R^{N(N-1)},A(\pmb {x})\in S\}} -\overline{\pmb {l}}_i^T \pmb {x}+v_i(A(\pmb {x}))~. \end{array} \end{aligned}$$
(50)

As the above optimization problem is convex and the KKT conditions are necessary and sufficient for optimality, \(\underline{\pmb {x}}\) is the solution to (50).

Now let us assume that we have already found \(\overline{\pmb {l}}_i, \forall i\in V\). Consider following system of equations,

(51)

First, we show that the above system of equations has at least one solution.

If we set \(\overline{\pmb {x}}^{(i)} = \underline{\pmb {x}}\), then Eqs. (51.a), (51.c) are satisfied. Moreover, the summation of left-hand side and right-hand side of (51.b) is zero which implies that one of the equations of type (51.b) is redundant. Therefore, if we choose an arbitrary value for \(\overline{\pmb {\pi }}^{(1)} \), then \(\overline{\pmb {\pi }}^{(2)}, \overline{\pmb {\pi }}^{(3)}, \cdots , \overline{\pmb {\pi }}^{(N)}\) can be determined accordingly based on (51.b). Moreover, notice that if we add all \(\overline{\pmb {\pi }}^{(i)}\) by a constant vector \(\pmb {c}\), then they still satisfy (51.a), (51.b), (51.c). Therefore, we can select an appropriate constant vector \(\pmb {c}\) to satisfy (51.d).

Now, we show the solution introduced above is a Nash equilibrium of the proposed mechanism. We chose \(\overline{\pmb {l}}_i\) such that it satisfies the following:

$$\begin{aligned} \begin{array}{ll} \overline{\pmb {x}}^{(i)} = \underline{\pmb {x}} \in \text {arg max}_{\pmb {x}\in R^{N\cdot (N-1)}} -\overline{\pmb {l}}_i^T \pmb {x}+v_i(A(\pmb {x}))~. \end{array} \end{aligned}$$
(52)

We use the following change of variable for the above optimization problem: \(N\pmb {x} - \sum _{j\in V-\{i\}} \overline{\pmb {x}}^{(j)} = \pmb {x}^{(i)}\). We have

(53)

By (51.c) and the fact that the users’ utility function is decreasing in tax, we have

(54)

The last equation implies that the solution to (51) is the fixed point of the best-response mapping. Therefore, the solution to (51) is a NE of the proposed mechanism.    \(\blacksquare \)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khalili, M.M., Zhang, X., Liu, M. (2019). Public Good Provision Games on Networks with Resource Pooling. In: Walrand, J., Zhu, Q., Hayel, Y., Jimenez, T. (eds) Network Games, Control, and Optimization. Static & Dynamic Game Theory: Foundations & Applications. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-10880-9_16

Download citation

Publish with us

Policies and ethics