Skip to main content

Clusters, Trees, and Phylogenetic Network Classes

  • Chapter
  • First Online:
Bioinformatics and Phylogenetics

Part of the book series: Computational Biology ((COBO,volume 29))

Abstract

Rooted phylogenetic networks are rooted acyclic digraphs that are used to represent complex evolution, where reticulation events (such as horizontal gene transfer, recombination, etc.) play a role. The combinatorial study of rooted phylogenetic networks has been an active research field of phylogenetics in the past decade. It serves as the foundation for the development of fast algorithms to reconstruct recombination networks in population genetics and hybridization networks in plant science. In this expository chapter, we introduce recent developments in characterizing the classes of rooted phylogenetic networks (including tree-based, reticulation-visible, galled networks, etc.) and designing fast algorithms for the cluster and tree containment problems for rooted phylogenetic networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anaya, M., Anipchenko-Ulaj, O., Ashfaq, A., Chiu, J., Kaiser, M., Ohsawa, M.S., Owen, M., Pavlechko, E., John, K.S., Suleria, S., Thompson, K., Yap, C.: On determining if tree-based networks contain fixed trees. Bull. Math. Biol. 78, 961–969 (2016)

    Article  MathSciNet  Google Scholar 

  2. Baroni, M., Semple, C., Steel, M.: A framework for representing reticulate evolution. Ann. Comb. 8(4), 391–408 (2005)

    Article  MathSciNet  Google Scholar 

  3. Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer, New York, USA (2008)

    Book  Google Scholar 

  4. Bordewich, M., Semple, C.: Reticulation-visible networks. Adv. Appl. Math. 78, 114–141 (2016)

    Article  MathSciNet  Google Scholar 

  5. Cardona, G., Llabrés, M., Rosselló, F., Valiente, G.: Metrics for phylogenetic networks I: Generalizations of the Robinson-Foulds metric. IEEE/ACM Trans. Comput. Biol. Bioinform. 6(1), 46–61 (2009)

    Article  Google Scholar 

  6. Cardona, G., Rossello, F., Valiente, G.: Comparison of tree-child phylogenetic networks. IEEE/ACM Trans. Comput. Biol. Bioinform. 6(4), 552–569 (2009)

    Article  Google Scholar 

  7. Döcker, J., van Iersel, L., Kelk, S., Linz, S.: Deciding the existence of a cherry-picking sequence is hard on two trees (2017). arXiv:1712.02965

  8. Fontaine, M.C., Pease, J.B., Steele, A., Waterhouse, R.M., Neafsey, D.E., Sharakhov, I.V., Jiang, X., Hall, A.B., Catteruccia, F., Kakani, E., Mitchell, S.N., Wu, Y.C., Smith, H.A., Love, R.R., Lawniczak, M.K., Slotman, M.A., Emrich, S.J., Hahn, M.W., Besansky, N.J.: Extensive introgression in a malaria vector species complex revealed by phylogenomics. Science 347(6217), 524–1258 (2015). https://doi.org/10.1126/science.1258524

    Article  Google Scholar 

  9. Francis, A., Huber, K.T., Moulton, V.: Tree-based unrooted phylogenetic networks. Bull. Math. Biol. 80(2), 404–416 (2018)

    Article  MathSciNet  Google Scholar 

  10. Francis, A., Semple, C., Steel, M.: New characterisations of tree-based networks and proximity measures. Adv. Appl. Math. 93, 93–107 (2018)

    Article  MathSciNet  Google Scholar 

  11. Francis, A.R., Steel, M.: Which phylogenetic networks are merely trees with additional arcs? Syst. Biol. 64(5), 768–777 (2015)

    Article  Google Scholar 

  12. Gambette, P., Gunawan, A.D., Labarre, A., Vialette, S., Zhang, L.: Locating a tree in a phylogenetic network in quadratic time. In: Proceedings of the International Conference on Research in Computational Molecular Biology (RECOMB), pp. 96–107. Springer (2015)

    Google Scholar 

  13. Gambette, P., Gunawan, A.D., Labarre, A., Vialette, S., Zhang, L.: Solving the tree containment problem in linear time for nearly stable phylogenetic networks. Discrete Appl. Math. 246, 62–79 (2018)

    Article  MathSciNet  Google Scholar 

  14. Georgiadis, L., Parotsidis, N.: Dominators in directed graphs: a survey of recent results, applications, and open problems. In: Proceedings of the International Symposium on Computing in Informatics and Mathematics, pp. 15–20. Epoka University, Albania (2013)

    Google Scholar 

  15. Gogarten, P.: Horizontal gene transfer: a new paradigm for biology. In: Proceedings of the Esalen Center for Theory and Research Conference (2000). http://archive.is/ZQVe

  16. Gunawan, A.: Solving tree containment problem for reticulation-visible networks with optimal running time (2017). arXiv:1702.04088

  17. Gunawan, A.D., DasGupta, B., Zhang, L.: A decomposition theorem and two algorithms for reticulation-visible networks. Inform. Comput. 252, 161–175 (2017)

    Article  MathSciNet  Google Scholar 

  18. Gunawan, A.D., Lu, B., Zhang, L.: A program for verification of phylogenetic network models. Bioinformatics 32(17), i503–i510 (2016)

    Article  Google Scholar 

  19. Gusfield, D.: ReCombinatorics: The Algorithmics of Ancestral Recombination Graphs and Explicit Phylogenetic Networks. MIT Press (2014)

    Google Scholar 

  20. Gusfield, D., Eddhu, S., Langley, C.: The fine structure of galls in phylogenetic networks. INFORMS J. Comput. 16(4), 459–469 (2004)

    Article  MathSciNet  Google Scholar 

  21. Hayamizu, M.: On the existence of infinitely many universal tree-based networks. J. Theoret. Biol. 396, 204–206 (2016)

    Article  MathSciNet  Google Scholar 

  22. Huson, D.H., Klöpper, T.H.: Beyond galled trees-decomposition and computation of galled networks. In: Proceedings of the International Conference on Research in Computational Molecular Biology (RECOMB), pp. 211–225. Springer (2007)

    Google Scholar 

  23. Huson, D.H., Rupp, R., Berry, V., Gambette, P., Paul, C.: Computing galled networks from real data. Bioinformatics 25(12), i85–i93 (2009)

    Article  Google Scholar 

  24. Huson, D.H., Rupp, R., Scornavacca, C.: Phylogenetic Networks: Concepts, Algorithms and Applications. Cambridge University Press (2010)

    Google Scholar 

  25. van Iersel, L.: Different topological restrictions of rooted phylogenetic networks. Which make biological sense? (2013). http://phylonetworks.blogspot.sg/2013/03/different-topological-restrictions-of.html

  26. van Iersel, L., Semple, C., Steel, M.: Locating a tree in a phylogenetic network. Inf. Process. Lett. 110(23), 1037–1043 (2010)

    Article  MathSciNet  Google Scholar 

  27. Jetten, L., van Iersel, L.: Nonbinary tree-based phylogenetic networks. IEEE/ACM Trans. Comput. Biol. Bioinform. (2018)

    Google Scholar 

  28. Kanj, I.A., Nakhleh, L., Than, C., Xia, G.: Seeing the trees and their branches in the network is hard. Theoret. Comput. Sci. 401(1–3), 153–164 (2008)

    Article  MathSciNet  Google Scholar 

  29. Lengauer, T., Tarjan, R.E.: A fast algorithm for finding dominators in a flowgraph. ACM Trans. Program. Lang. Syst. 1(1), 121–141 (1979)

    Article  Google Scholar 

  30. Linder, C.R., Moret, B.M., Nakhleh, L., Warnow, T.: Network (reticulate) evolution: biology, models, and algorithms. In: Proceedings of the Ninth Pacific Symposium on Biocomputing (PSB) (2004)

    Google Scholar 

  31. Lu, B., Zhang, L., Leong, H.W.: A program to compute the soft Robinson-Foulds distance between phylogenetic networks. BMC Genomics 18(2), 111 (2017)

    Article  Google Scholar 

  32. Marcussen, T., Sandve, S.R., Heier, L., Spannagl, M., Pfeifer, M., The International Wheat Genome Sequencing Consortium, Jakobsen, K.S., Wulff, B.B., Steuernagel, B., Mayer, K.F., Olsen, O.A.: Ancient hybridizations among the ancestral genomes of bread wheat. Science 345(6194), 092–1250 (2014). https://doi.org/10.1126/science.1250092

    Article  Google Scholar 

  33. Moran, N.A., Jarvik, T.: Lateral transfer of genes from fungi underlies carotenoid production in aphids. Science 328(5978), 624–627 (2010)

    Article  Google Scholar 

  34. Moser, R.A., Scheder, D.: A full derandomization of Schöning’s k-SAT algorithm. In: Proceedings of the 43rd Annual ACM Symposium on Theory of Computing, pp. 245–252. ACM (2011)

    Google Scholar 

  35. Nakhleh, L., Wang, L.S.: Phylogenetic networks: properties and relationship to trees and clusters. In: Transactions on Computational Systems Biology II, pp. 82–99. Springer (2005)

    Google Scholar 

  36. Semple, C.: Phylogenetic networks with every embedded phylogenetic tree a base tree. Bull. Math. Biol. 78(1), 132–137 (2016)

    Article  MathSciNet  Google Scholar 

  37. Steel, M.: Phylogeny: Discrete and Random Processes in Evolution. SIAM, Philadelphia, USA (2016)

    Book  Google Scholar 

  38. Tarjan, R.: Finding dominators in directed graphs. SIAM J. Comput. 3(1), 62–89 (1974)

    Article  MathSciNet  Google Scholar 

  39. Wang, L., Zhang, K., Zhang, L.: Perfect phylogenetic networks with recombination. J. Comput. Biol. 8(1), 69–78 (2001)

    Article  Google Scholar 

  40. Warnow, T.: Computational Phylogenetics: An Introduction to Designing Methods for Phylogeny Estimation. Cambridge University Press, Cambridge, UK (2017)

    Book  Google Scholar 

  41. Weller, M.: Linear-time tree containment in phylogenetic networks (2017). arXiv:1702.06364

  42. Willson, S.: Regular networks can be uniquely constructed from their trees. IEEE/ACM Trans. Comput. Biol. Bioinform. 8(3), 785–796 (2011)

    Article  Google Scholar 

  43. Yan, H., Gunawan, A.D., Zhang, L.: S-Cluster++: a fast program for solving the cluster containment problem for phylogenetic networks. Bioinformatics 34(17), i680–i686 (2018)

    Article  Google Scholar 

  44. Zhang, L.: On tree-based phylogenetic networks. J. Comput. Biol. 23(7), 553–565 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author thanks his collaborators Philippe Gambette, Anthony Labarre and Stéphane Vialette (Université Paris-Est) for initiating a 2-year project on rooted phylogenetic networks, which was financially supported by the Institute of France at Singapore and the National University of Singapore. This chapter is mainly based on the findings from the project. The author thanks Andreas D. M. Gunawan, who injected many ideas for studying reticulation-visible networks. The author also thanks Daniel Huson and an anonymous reviewer for useful comments on the first draft of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louxin Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, L. (2019). Clusters, Trees, and Phylogenetic Network Classes. In: Warnow, T. (eds) Bioinformatics and Phylogenetics. Computational Biology, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-030-10837-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10837-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10836-6

  • Online ISBN: 978-3-030-10837-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics