Skip to main content

Polymeric Nanoparticulates as Efficient Anticancer Drugs Delivery Systems

  • Chapter
  • First Online:
Book cover Nanomaterials for Advanced Biological Applications

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 104))

Abstract

Over recent decades, improving human health is undergoing an eruption of consideration led by the use of nanoparticles (NPs) as platforms for delivering drugs to cells. These NPs can be engineered to accumulate specifically at diseased cells, which allows direct delivering of drugs to target tissue.

S. Asfia and M. Mohammadian—Equal contributors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal, S., Dwivedi, M., Ahmad, H., Chadchan, S.B., Arya, A., Sikandar, R., et al.: CD44 targeting hyaluronic acid coated lapatinib nanocrystals foster the efficacy against triple-negative breast cancer. Nanomed. Nanotechnol. Biol. Med. 14(2), 327–337 (2017)

    Article  Google Scholar 

  • Ajazuddin, S.S.: Applications of novel drug delivery system for herbal formulations. Fitoterapia 81(7), 680–689 (2010)

    Article  Google Scholar 

  • Allen, T.M., Cullis, P.R.: Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev. 65(1), 36–48 (2013)

    Article  Google Scholar 

  • Amreddy, N., Babu, A., Muralidharan, R., Munshi, A., Ramesh, R.: Polymeric nanoparticle-mediated gene delivery for lung cancer treatment. Top. Curr. Chem. 375(2), 35 (2017)

    Article  Google Scholar 

  • Azuma, A., Osaki, T., Minami, S., Okamoto, Y.: Anticancer and anti-inflammatory properties of chitin and chitosan oligosaccharides. J. Funct. Biomater. 6, 33–49 (2015)

    Article  Google Scholar 

  • Babaei, Z., Jahanshahi, M., Sanati, M.H.: Fabrication and evaluation of gelatin NPs for delivering of anti-cancer drug. Int. J. Nanosci. Nanotechnol. 4(1), 23–29 (2008)

    Google Scholar 

  • Barrajón-Catalán, E., Menéndez-Gutiérrez, M.P., Falco, A., Carrato, A., Saceda, M., Micol, V.: Selective death of human breast cancer cells by lytic immunoliposomes: correlation with their HER2 expression level. Cancer Lett. 290(2), 192–203 (2010)

    Article  Google Scholar 

  • Bayrac, A.T., Akc, O.E., Eyidogan, F.I., OKTEM, H.A.: Target-specific delivery of doxorubicin to human glioblastoma cell line via ssDNA aptamer. J. Biosci. 43(1), 97–104 (2018)

    Article  Google Scholar 

  • Bertrand, N., Wu, J., Xu, X., Kamaly, N., Farokhzad, O.C.: Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev. 66, 2–25 (2014)

    Article  Google Scholar 

  • Bhatia, S.: NPs types, classification, characterization, fabrication methods and drug delivery applications. Nat. Polym. Drug Deliv. Syst., 33–93 (2016)

    Google Scholar 

  • Biondi, M., Ungaro, F., Quaglia, F., Netti, P.: Controlled drug delivery in tissue engineering. Adv. Drug Deliv. Rev. 60(2), 229–242 (2008)

    Article  Google Scholar 

  • Blanco, M.D., Gomez, C., Olmo, R, Muniz E., Teijon, J.M. (2000). Chitosan microspheres in PLG films as devices for cytarabine release. Int. J. Pharm. 202, 29–39

    Article  Google Scholar 

  • Bonifácio, B.V., Silva, P.B., Ramos, M.A., Negri, K.M., Bauab, T.M., Chorilli, M.: Nanotechnology-based drug delivery systems and herbal medicines: a review. Int. J. Nanomed. 9, 1–15 (2014)

    Article  Google Scholar 

  • Booser, D.J., Esteva, F.J., Rivera, E., Valero, V., Esparza-Guerra, L., Priebe, W., et al.: Phase II study of liposomal annamycin in the treatment of doxorubicin-resistant breast cancer. Cancer Chemother. Pharmacol. 50, 6–8 (2002)

    Article  Google Scholar 

  • Bressler, N.M., V.I.P.T.S. Group: Verteporfin therapy of subfoveal choroidal neovascularization in age-related macular degeneration: two-year results of a randomized clinical trial including lesions with occult with no classic choroidal neovascularization—verteporfin in photodynamic therapy report 2. Am. J. Ophthalmol. 131, 541–560 (2001)

    Article  Google Scholar 

  • Carter, T., Mulholland, P., Chester, K.: Antibody-targeted NPs for cancer treatment. Immunotherapy 8(8), 941–958 (2016)

    Article  Google Scholar 

  • Caspersen, M.B., Kuhlmann, M., Nicholls, K., Saxton, M.J., Andersen, B., Howard, K.A.: Albumin-based drug delivery using cysteine 34 chemical conjugates—important considerations and requirements. Ther. Deliv. 8(7), 511–519 (2017)

    Article  Google Scholar 

  • Chang-Lin, J., Attar, M., Acheampong, A., et al.: Pharmacokinetics and pharmacodynamics of a sustained release dexamethasone intravitreal implant. Invest. Ophthalmol. Vis. Sci. 52(1), 80–86 (2011)

    Article  Google Scholar 

  • Chaudhari, K., Kumar, A., Khandelwal, V., et al.: Bone metastasis targeting: a novel approach to reach bone using zoledronate anchored PLGA nanoparticle as carrier system loaded with docetaxel. J. Controlled Release 158, 470–478 (2012)

    Article  Google Scholar 

  • Coester, C., Nayyar, P., Samuel, J.: In vitro uptake of gelatin NPs by murine dendritic cells and their intracellular localization. Eur. J. Pharm. Biopharm. 62(3), 306–314 (2006)

    Article  Google Scholar 

  • Danhier, F., Breton, A.L., Préat, V.: RGD-based strategies to target alpha(v) beta(3) integrin in cancer therapy and diagnosis. Am. Chem. Soc. 9(11), 2961–2973 (2012)

    Google Scholar 

  • Dickers, K.J., Huatan, H., Cameron, R.E.: Polyglycolide-based blends for drug delivery: a differential scanning calorimetry study of the melting behavior. J. Appl. Polym. Sci. 89, 2937–2939 (2003)

    Article  Google Scholar 

  • Dreis, S., Rothweiler, F., Michaelis, M., Kreuter, J., Langer, K.: Preparation, characterisation and maintenance of drug efficacy of doxorubicin-loadedhuman serum albumin (HSA) NPs. Int. J. Pharm. 341, 207–214 (2007)

    Article  Google Scholar 

  • Dubey, R.D., Alama, N., Sanejaa, A., Kharea, V., Kumarb, A., Vaidhb, S., et al.: Development and evaluation of sustained-release clonidine-loaded PLGA microparticles. Int. J. Pharm. 437, 20–28 (2012)

    Article  Google Scholar 

  • Dubey, R.D., Alam, N., Saneja, A., Kharea, V., Kumarb, A., Vaidhbet, S., et al.: Development and evaluation of folate functionalized albumin NPs for targeted delivery of gemcitabine. Int. J. Pharm. 492, 80–91 (2015)

    Article  Google Scholar 

  • Elbayoumi, T.A., Torchilin, V.P.: Tumor-specific antibody-mediated targeted delivery of Doxil reduces the manifestation of auricular erythema side effect in mice. Int. J. Pharm. 357(1–2), 272–279 (2008)

    Article  Google Scholar 

  • Elgadir, M.A., Uddin, M.S., Ferdous, S., Adam, A., Khan Chowdhury, A.J., Sarker, M.D.Z.I.: Impact of chitosan composites and chitosan nanoparticle composites on various drug delivery systems: a review. J. Food Drug Anal. 23(216), 619–629 (2014)

    Google Scholar 

  • Elzoghby, A.O., Samy, W.M., Elgindy, N.A.: Albumin-based NPs as potential controlled release drug delivery systems. J. Controlled Release 157(2), 168–182 (2012)

    Article  Google Scholar 

  • Ezpeleta, I., Irache, J.M., Stainmesse, S.: Gliadin NPs for the controlled release of all-trans-retinoic acid. Int. J. Pharm. 131(2), 191–200 (1996)

    Article  Google Scholar 

  • Fadaeian, G., Shojaosadati, S.A., Kouchakzadeh, H., Shokri, F., Soleimani, M.: Targeted delivery of 5-fluorouracil with monoclonal antibody modified bovine serum albumin NPs. Iran. J. Pharm. Res. 14(2), 395–405 (2015)

    Google Scholar 

  • Fahmy, U.A., Ahmed, O.A.A., Hosny, K.M.: Development and evaluation of avanafil self nanoemulsifying drug delivery system with rapid onset of action and enhanced bioavailability. AAPS PharmSciTech. 16(1), 53–58 (2015)

    Article  Google Scholar 

  • Farajzadeh, R., Pilehvar-Soltanahmadi, Y., Dadashpour, M., Javidfar, S., Lotfi-Attari, F., Sadeghzadeh, H., et al.: Nano-encapsulated metformin-curcumin in PLGA/PEG inhibits synergistically growth and hTERT gene expression in human breast cancer cells. Artif. Cells Nanomed. Biotechnol. 5, 1–9 (2017)

    Article  Google Scholar 

  • Farokhzad, O.C., Langer, R.: Impact of nanotechnology on drug delivery. Am. Chem. Soc. Nano 3(1), 16–20 (2009)

    Google Scholar 

  • Feldman, E.J., Lancet, J.E., Kolitz, J.E., Ritchie, E.K., Roboz, G.J., List, A.F., et al.: First-in-man study of CPX-351: a liposomal carrier containing cytarabine and daunorubicin in a fixed 5:1 molar ratio for the treatment of relapsed and refractory acute myeloid leukemia. J. Clin. Oncol. 29, 979–985 (2011)

    Article  Google Scholar 

  • Feng, L., Yu, H., Liu, Y., Hu, X., Li, J., et al.: Construction of efficacious hepatoma-targeted nanomicelles non-covalently functionalized with galactose for drug delivery. Polym. Chem. 24, 7121–7130 (2014)

    Article  Google Scholar 

  • Ferrari, M.: Cancer nanotechnology: opportunities and challenges. Nat. Rev. Cancer 5, 161–171 (2005)

    Article  Google Scholar 

  • Gainzaa, G., Villullas, S., Pedraza, J.L., Hernandeza, R.M., Igartua, M. (2015). Advances in drug delivery systems (DDSs) to release growth factors for wound healing and skin regeneration. Nanomed. Nanotechnol. Biol. Med. 11(6), 1551–73

    Article  Google Scholar 

  • Gambling, D., Hughes, T., Martin, G., Horton, W., Manvelian, G.: A comparison of Depodur, a novel, single-dose extended-release epidural morphine, with standard epidural morphine for pain relief after lower abdominal surgery. Anesth. Analg. 100, 1065–1074 (2005)

    Article  Google Scholar 

  • Gan, C.W., Feng, S.S.: Transferrin-conjugated NPs of poly(lactide)-D-α-tocopheryl polyethylene glycol succinate diblock copolymer for targeted drug delivery across the bloodebrain barrier. Biomaterials 31(30), 7748–7757 (2010)

    Article  Google Scholar 

  • Gao, S., Sun, J., Fu, D., Zhao, H., Lan, M., Gao, F.: Preparation, characterization and pharmacokinetic studies oftacrolimus-dimethyl-cyclodextrin inclusion complex-loaded albumin NPs. Int. J. Pharm. 427, 410–416 (2012)

    Article  Google Scholar 

  • Garg, S.M., Paiva, I.M., Vakili, M.R., Soudy, R., Agopsowicz, K., Soleimani, A., et al.: Traceable PEO-poly(ester) micelles for breast cancer targeting: the effect of core structure and targeting peptide on micellar tumor accumulation. Biomaterials 144, 17–29 (2017)

    Article  Google Scholar 

  • Gopinath, P., Bhushan, B., Dubey, P., Kumar, S.U., Sachdev, A., Matai, I.: Bionanotherapeutics: niclosamide encapsulated albumin NPs as a novel drug delivery system for cancer therapy. RSC Adv. 5, 12078–12086 (2015)

    Article  Google Scholar 

  • Graf, N., Bielenberg, D.R., Kolishetti, N., Muus, C., Banyard, J., Farokhzad, O.C., et al.: αvβ3 integrin-targeted PLGA-PEG NPs for enhanced anti-tumor efficacy of a Pt(IV) prodrug. ACS Nano 26(5), 4530–4539 (2012)

    Article  Google Scholar 

  • Hann, I.M., Prentice, H.G.: Lipid-based amphotericin B: a review of the last 10 years of use. Int. J. Antimicrob. Agents 17, 161–169 (2001)

    Article  Google Scholar 

  • Hathout, M.R., Omran, M.K.: Gelatin-based particulate systems in ocular drug delivery. Pharm. Dev. Technol. 21(3), 379–386 (2015)

    Article  Google Scholar 

  • He, X., Xiang, N., Zhang, J., et al.: Encapsulation of teniposide into albumin NPs with greatlylowered toxicity and enhanced antitumor activity. Int. J. Pharm. 487, 250–259 (2015)

    Article  Google Scholar 

  • Heger, Z., Gumulec, J., Cernei, N., Tmejova, K., Kopel, P., Balvan, J., et al.: 17β-estradiol-containing liposomes as a novel delivery system for the antisense therapy of ER-positive breast cancer: an in vitro study on the MCF-7 cell line. Oncol. Rep. 33(2), 921–929 (2014)

    Article  Google Scholar 

  • Irache, J.M., Espuelas, S.: Nanotechnologies for the life sciences, albumin NPs. Biol. Pharm. Nanomater. 2, 185–218 (2006)

    Google Scholar 

  • Jahangirian, H., Ghasemian Lemraski, E., Webster, T.J.: A review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicine. Int. J. Nanomed. 12, 2957–2978 (2017)

    Article  Google Scholar 

  • Jahanshahi, M.: Re-design of downstream processing techniques for nanoparticulate bioproducts. Iran. J. Biotechnol. 2, 1–12 (2004)

    Google Scholar 

  • Jain, A., Chasoo, G., Singh, S.K., Saxena, A.K., Jain, S.K.: Transferrin-appended PEGylated NPs for temozolomide delivery to brain: in vitro characterization. J. Microencapsul. 28(1), 21–28 (2011)

    Article  Google Scholar 

  • Jain, A., Jain, K., Kumar Mehra, N., Jain, N.K.: Lipoproteins tethered dendrimeric nanoconstructs for effective targeting to cancer cells. J. Nanopart. Res. 15, 2003 (2013)

    Article  Google Scholar 

  • Jain, A., Jain, S.K.: Multipronged strategic delivery of paclitaxel-topotecan using engineered liposomes to ovarian cancer. Drug Dev. Ind. Pharm. 42(1), 136–149 (2016)

    Article  Google Scholar 

  • Jameela, S.R., Jayakrisnan, A.: Glutaraldehyde cross-linked chitosan microspheres as a long acting biodegradable drug delivery vehicle: studies on the in vitro release of mitoxantrone and in vivo degradation of microspheres in rat muscle. Biomaterials 16, 769–775 (1995)

    Article  Google Scholar 

  • Jayaraman, M., Ansell, S.M., Mui, B.L., Tam, Y.K., Chen, J., Du, X., et al.: Maximizing the potency of siRNA lipid NPs for hepatic gene silencing in vivo. Angew. Chem. Int. Ed. Engl. 51(34), 8529–8533 (2012)

    Article  Google Scholar 

  • Jintapattanakit, A., Junyaprasert, V.B., Kissel, T.J.: The role of mucoadhesion of trimethyl chitosan and PEGylated trimethyl chitosan nanocomplexes in insulin uptake. J. Pharm. Sci. 98, 4818–4830 (2009)

    Article  Google Scholar 

  • Johnston, M.J., Semple, S.C., Klimuk, S.K., Edwards, K., Eisenhardt, M.L., Leng, E.C., et al.: Therapeutically optimized rates of drug release can be achieved by varying the drug-to-lipid ratio in liposomal vincristine formulations. Biochem. Biophys. Acta. 1758, 55–64 (2006)

    Article  Google Scholar 

  • Ju, R.J., Cheng, L., Qiu, X., Liu, S., Song, X.L., Peng, X.M., et al.: Hyaluronic acid modified daunorubicin plus honokiol cationic liposomes for the treatment of breast cancer along with the elimination vasculogenic mimicry channels. J. Drug Target., 1–23 (2018)

    Google Scholar 

  • Kapoor, D.N., Bhatia, A., Kaur, R., Sharma, R., Kaur, G., Dhawan, S.: PLGA: a unique polymer for drug delivery. Ther. Deliv. 6(1), 41–58 (2015)

    Article  Google Scholar 

  • Kazunori, K., Glenn, S.K., Masayuki, Y., Teruo, O., Yasuhisa, S.: Block copolymer micelles as vehicles for drug delivery. J. Controlled Release 24, 119–132 (1993)

    Article  Google Scholar 

  • Kim, J., Wilson, D.R., Zamboni, C.G., Green, J.J.: Targeted polymeric NPs for cancer gene therapy. J. Drug Target. 23(7–8), 627–641 (2015)

    Article  Google Scholar 

  • Kim, J.H., Kim, Y.S., Kim, S.W., Park, J.H., Kim, K.M., Choi, K.W., et al.: Hydrophobically modified glycol chitosan NPs as carriers for paclitaxel. J. Controlled Release 111, 228–234 (2006)

    Article  Google Scholar 

  • Kim, J.K., Kim, H.J., Chung, J.Y., Lee, J.H., Young, S.B., Kim, Y.H.: Natural and synthetic biomaterials for controlled drug delivery. Arch. Pharmacal Res. 37(1), 60–68 (2014)

    Article  Google Scholar 

  • Kim, T.H., Jiang, H.H., Youn, Y.S., et al.: Preparation and characterization of water-soluble albumin-bound curcumin NPs with improved antitumor activity. Int. J. Pharm. 403, 285–291 (2011)

    Article  Google Scholar 

  • Kirpotin, D.B., Drummond, D.C., Shao, Y., Shalaby, M.R., Hong, K., Nielsen, U.B., et al.: Internalization in animal models does not increase tumor localization but does increase antibody targeting of long-circulating lipidic NPs. Can. Res. 66, 6732–6740 (2006)

    Article  Google Scholar 

  • Kobayashi, T., Tsukagoshi, S., Sakurai, Y.: Enhancement of the cancer chemotherapeutic effect of cytosine arabinoside entrapped in liposomes on mouse leukemia L-1210. Gann 6, 719–720 (1975)

    Google Scholar 

  • Kouchakzadeh, H., Sadat Safavi, M., Shojaosadati, S.A.: Efficient delivery of therapeutic agents by using targeted albumin NPs. Adv. Protein Chem. Struct. Biol. 98, 121–138 (2015)

    Article  Google Scholar 

  • Kouchakzadeh, H., Shojaosadati, S.A.: Protein-based NPs as a nanobiotechnological tool for cancer theranostics. New Biotechnol. 6, 1232 (2016a)

    Google Scholar 

  • Kouchakzadeh, H., Shojaosadati, S.A.: The prominent role of protein-based delivery systems on the development of cancer treatment. Curr. Pharm. Des. 22(22), 3455–65 (2016b)

    Article  Google Scholar 

  • Kouchakzadeh, H., Shojaosadati, S.A., Maghsoudi, A., Vasheghani Farahani, A.: Optimization of PEGylation conditions for BSA NPs using response surface methodology. AAPS PharmSciTech. 11(3), 1206–1211 (2010)

    Article  Google Scholar 

  • Kouchakzadeh, H., Shojaosadati, S.A., Mohammadnejad, J., Paknejad, M., Rasaee, M.J.: Attachment of an anti-MUC1 monoclonal antibody to 5-FU loaded BSA NPs for active targeting of breast cancer cells. Hum. Antibodies 21, 49–56 (2012)

    Article  Google Scholar 

  • Kouchakzadeh, H., Shojaosadati, S.A., Shokri, F.: Efficient loading and entrapment of tamoxifen inhuman serum albumin based nanoparticulate delivery system by a modified desolvation technique. Chem. Eng. Res. Des. 92, 1681–1692 (2014)

    Article  Google Scholar 

  • Kouchakzadeh, H., Shojaosadati, S.A., Tahmasebi, F., Shokri, F.: Optimization of an anti-HER2 monoclonal antibody targeted delivery system using PEGylated human serum albumin NPs. Int. J. Pharm. 447(1–2), 62–69 (2013)

    Article  Google Scholar 

  • Kouchakzadeh, H., Soudi, T., Heshmati Aghda, N., Shojaosadati, S.A.: Ligand-modified biopolymeric NPs as efficient tools for targeted cancer therapy. Curr. Pharm. Des. 23(35), 5336–5348 (2017)

    Google Scholar 

  • Kratz, F.: Albumin as a drug carrier: design of prodrugs, drug conjugates and NPs. J. Controlled Release 132(3), 171–181 (2008)

    Article  Google Scholar 

  • Kratz, F., Fichtner, I., Beyer, U.: Antitumor activity of acid labile transferrin and albumin doxorubicin conjugates in in vitro and in vivo human tumour xenograft model. Eur. J. Cancer 33, 175 (1997)

    Article  Google Scholar 

  • Krauze, M.T., Noble, C.O., Kawaguchi, T., Drummond, D., Kirpotin, D.B., Yamashita, Y., et al.: Convection enhanced delivery of nanoliposomal CPT-11 (irinotecan) and PEGylated liposomal doxorubicin (Doxil) in rodent intracranial brain tumor xenografts. Neuro Oncology 9, 393–403 (2007)

    Article  Google Scholar 

  • Kushwah, V., Kumar Agrawa, A., Parkash Dora, C., Mallinson, D., Lamprou, D.A., Gupta, R.C., et al.: Novel gemcitabine conjugated albumin NPs: a potential strategy to enhance drug efficacy in pancreatic cancer treatment. Pharm. Res. 34(11), 2295–2311 (2017)

    Article  Google Scholar 

  • Feng, L., Gao, M., Tao, D., Chen, Q., Hu, X., et al.: Cisplatin-prodrug-constructed liposomes as a versatile theranostic nanoplatform for bimodal imaging guided combination cancer therapy. Adv. Func. Mater. 26(13), 2207–2217 (2016)

    Article  Google Scholar 

  • Labhasetwar, V.: Nanotechnology for drug and gene therapy: the importance of understanding molecular mechanisms of delivery. Curr. Opin. Biotechnol. 16, 674–680 (2005)

    Article  Google Scholar 

  • Ladju, R.B., Pascut, D., Massi, M.N., Tiribelli, C., Sukowati, C.H.C.: Aptamer: a potential oligonucleotide nanomedicine in the diagnosis and treatment of hepatocellular carcinoma. Oncotarget 9(2), 2951–2961 (2017)

    Google Scholar 

  • Laha, A., Bhutani, U., Mitra, K., Majumdar, S.: Fast and slow release: synthesis of gelatin casted-film based drug delivery system. Mater. Manuf. Processes 31(2), 223–230 (2015)

    Article  Google Scholar 

  • Larsen, M.T., Kuhlmann, M., Hvam, M.L., Howard, K.A.: Albumin-based drug delivery: harnessing nature to cure disease. Mol. Cell. Ther. 4(3), 1–12 (2016)

    Google Scholar 

  • Lassalle, V., Ferreira, M.L.: PLA nano- and microparticles for drug delivery: an overview of the methods of preparation. Macromol. Biosci. 7, 767–783 (2007)

    Article  Google Scholar 

  • Lee, S.J., Kim, H.J., Huh, Y.M., Kim, I.W., Jeong, J.H., Kim, J.C., et al.: Functionalized magnetic PLGA nanospheres for targeting and bioimaging of breast cancer. J. Nanosci. Nanotechnol. 18(3), 1542–1547 (2018)

    Article  Google Scholar 

  • Li, C., Li, Y., Gao, Y., Wei, N., Zhao, X., et al.: Direct comparison of two albumin-based paclitaxel-loaded nanoparticle formulations: is the cross linked version more advantageous? Int. J. Pharm. 468, 15–25 (2014)

    Article  Google Scholar 

  • Li, L., Lu, Y., Jiang, C., Zhu, Y., Yang, X., Hu, X., et al.: Actively targeted deep tissue imaging and photothermal-chemo therapy of breast cancer by antibodyfunctionalized drug-loaded X-ray-responsive bismuth sulfide@mesoporous silica core-shell NPs. Adv. Func. Mater. 28(5), 1704623 (2018)

    Article  Google Scholar 

  • Liechty, W.B., Kryscio, D.R., Slaughter, B.V., Peppas, N.A.: Polymers for drug delivery systems. Annu. Rev. Chem. Biomol. Eng. 1, 149–173 (2010)

    Article  Google Scholar 

  • Lin, T., Zhao, P., Jiang, Y., Tang, Y.: Blood–brain-barrier-penetrating albumin NPs for biomimetic drug delivery via albumin-binding protein pathways for antiglioma therapy. ACS Nano 10, 9999–10012 (2016)

    Article  Google Scholar 

  • Liu, C.H., Liu, X.N., Wang, G.L., Hei, Y., Meng, S.H., Yang, L.F., et al.: A dual-mediated liposomal drug delivery system targeting the brain: rational construction, integrity evaluation across the blood–brain barrier, and the transporting mechanism to glioma cells. Int. J. Nanomed. 2, 2407–2425 (2017)

    Article  Google Scholar 

  • Liu, J., Wei, T., Zhao, J., Huang, Y., Deng, H., Kumar, A., et al.: Multifunctional aptamer-based NPs for targeted drug delivery to circumvent cancer resistance. Biomaterials 91, 44–56 (2016)

    Article  Google Scholar 

  • Liua, p., Situa, J.Q., Lia, W.S., Shana, C.L., Youa, J., Yuana, H., et al.: High tolerated paclitaxel nano-formulation delivered by poly(lactic-coglycolic acid)-g-dextran micelles to efficient cancer therapy. Nanomed. Nanotechnol. Biol. Med. 11, 855–866 (2015)

    Article  Google Scholar 

  • Lohcharoenkal, W., Wang, L., Chen, T.C., Rojanasakul, Y.: Protein NPs as drug delivery carriers for cancer therapy. BioMed Res. Int., 180549 (2014)

    Google Scholar 

  • Lozano, M.V., Esteban, H., Brea, J., Loza, M.I., Torres, D., Alonso, M.J.: Intracellular delivery of docetaxel using freeze-dried polysaccharide nanocapsules. J. Microencapsul. 30(2), 181–188 (2013)

    Article  Google Scholar 

  • Lu, Y., Sega, E., Leamon, C.P., Low, P.S.: Folate receptor-targeted immunotherapy of cancer: mechanism and therapeutic potential. Adv. Drug Deliv. Rev. 56, 1161–1176 (2004)

    Article  Google Scholar 

  • Lucia, M.B., Maria, A.H., Josefa, A.F., Mercedes, F.A.: Use of flow Focusing® technology to produce tobramycin-loaded PLGA microparticles for pulmonary drug delivery. Med. Chem. 8(4), 533–540 (2012)

    Article  Google Scholar 

  • Luo, Y., Wang, Q.: Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. Int. J. Biol. Macromol. 64, 353–367 (2014)

    Article  Google Scholar 

  • Lv, Q., Li, L.M., Han, M., Tang, X.J., Yao, J.N., Yinget, X.Y., et al.: Characteristics of sequential targeting of brain glioma for transferrin-modified cisplatin liposome. Int. J. Pharm. 444(1–2), 1–9 (2013)

    Article  Google Scholar 

  • Makadia, H., Siegel, S.: Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3, 1377–1397 (2011)

    Article  Google Scholar 

  • Manisekaran, R.: Introduction to Nanomedicine and Cancer Therapy. Springer Publishing Group, pp. 1–36 (2018)

    Google Scholar 

  • Marty, J.J., Oppenheim, R.C., Speiser, P.: NPs—a new colloidal drug delivery system. Pharm. Acta Helv. 53(1), 17–23 (1978)

    Google Scholar 

  • Maya, S., Sarmento, B., Kumar Lakshmanan, V., Menon, D., Seabra, V., Jayakumar, R.: Chitosan cross-linked docetaxel loaded EGF receptor targeted NPs for lung cancer cells. Int. J. Biol. Macromol. 69, 532–541 (2014)

    Article  Google Scholar 

  • Mazur, J., Roy, K., Kanwar, J.R.: Recent advances in nanomedicine and survivin targeting in brain cancers. Nanomedicine 13(1), 105–137 (2017)

    Article  Google Scholar 

  • McDaniel, J.R., Dewhirst, M.W., Chilkoti, A.: Actively targeting solid tumors with thermoresponsive drug delivery systems that respond to mild hyperthermia. Int. J. Hyperth. 29(6), 501–510 (2013)

    Article  Google Scholar 

  • Min, L., Jo, H., Song, K., Cho, M., Chun, Y.S., Jon, S., et al.: Dual-aptamer-based delivery vehicle of doxorubicin to both PSMA (+) and PSMA (−) prostate cancers. Biomaterials 32(8), 2124–2132 (2011)

    Article  Google Scholar 

  • Mitra, S., Gaur, U., Ghosh, P.C., et al.: Tumour targeted delivery of encapsulated dextranedoxorubicin conjugate using chitosan NPs as carrier. J. Controlled Release 74, 317–323 (2001)

    Article  Google Scholar 

  • Miura, Y., Takenaka, T., Toh, K., Wu, S., Nishihara, H., Kano, M.R., et al.: Cyclic RGD-linked polymeric micelles for targeted delivery of platinum anticancer drugs to glioblastoma through the blood–brain tumor barrier. ACS Nano 7(10), 8583–8592 (2013)

    Article  Google Scholar 

  • Mo, R., Jiang, T., Gu, Z.: Enhanced anticancer efficacy by ATP-mediated liposomal drug delivery. Angew. Chem. 126(23), 5925–5930 (2014)

    Article  Google Scholar 

  • Moghimipour, E., Rezaei, M., Ramezani, Z., Kouchak, M., Amini, M., Ahmadi Angali, K., et al.: Folic acid-modified liposomal drug delivery strategy for tumor targeting of 5-fluorouracil. Eur. J. Pharm. Sci. 114, 166–174 (2018a)

    Article  Google Scholar 

  • Moghimipour, E., Rezaei, M., Ramezani, Z., Kouchak, M., Amini, M., Ahmadi Angali, K., et al.:. Transferrin targeted liposomal 5 fluorouracil induced apoptosis via mitochondria signaling pathway in cancer cells. Life Sci. 194, 104–110 (2018b)

    Article  Google Scholar 

  • Mornet, E., Carmoy, N., Lainé, C., Lemiègre, L., Gall, T.L., Laurent, I., et al.: Folate-equipped nanolipoplexes mediated efficient gene transfer into human epithelial cells. Int. J. Mol. Sci. 14(1), 1477–1501 (2013)

    Article  Google Scholar 

  • Movassaghian, S., Merkel, O.M., Torchilin, V.P.: Applications of polymer micelles for imaging and drug delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 7(5), 691–707 (2015)

    Article  Google Scholar 

  • Nag, M., Gajbhiye, V., Kesharwani, P., Jain, N.K.: Transferrin functionalized chitosan-PEG NPs for targeted delivery of paclitaxel to cancer cells. Colloids Surf., B 148, 363–370 (2016)

    Article  Google Scholar 

  • Nguyen, K.T., Le, D.V., Do, D.H., Le, Q.H.: Development of chitosan graft pluronic®F127 copolymer NPs containing DNA aptamer for paclitaxel delivery to treat breast cancer cells. Adv. Natl. Sci. Nanosci. Nanotechnol. 7(2), 5018–5026 (2016)

    Google Scholar 

  • Nguyena, H.T., Trana, T.H., Thapa, R.K., Phunga, C.D., Shinb, B.S., Jeonga, J.H., et al.: Targeted co-delivery of polypyrrole and rapamycin by trastuzumab-conjugated liposomes for combined chemo-photothermal therapy. Int. J. Pharm. 527(1–2), 61–71 (2017)

    Article  Google Scholar 

  • Niu, C., Wang, Z., Lu, G., Krupka, T.M., Sun, Y., et al.: Doxorubicin loaded superparamagnetic PLGA iron oxide multifunctional microbubbles for dual mode US/MR imaging and therapy of metastasis in lymph nodes. Biomaterials 34, 2307–2317 (2013)

    Article  Google Scholar 

  • Norouzi, P., amini, M., Mottaghitalab, F., Mirzazadeh Tekie F.S., Dinarvand, R., et al.: Design and fabrication of dual-targeted delivery system based on gemcitabine conjugated human serum albumin nanoparticles. Chem. Biol. Drug Des. (2017). https://doi.org/10.1111/cbdd.13044

  • Oh, H.R., Jo, H.Y., Park, J.S., Kim, D.E., Cho, J.Y., Kim, P.H., et al.: Galactosylated liposomes for targeted co-delivery of doxorubicin/vimentin siRNA to hepatocellular carcinoma. Nanomaterials 6(8), 141 (2016)

    Article  Google Scholar 

  • Ohya, Y., Shiratani, M., Kobayashi, H., Ouchi, T.: Release behavior of 5-fluorouracil from chitosan-gel nanospheres immobilizing 5-fluorouracil coated with polysaccharides and their cell specific cytotoxicity. J. Macromol. Sci. Part A Pure Appl. Chem. 31(5), 629–642 (1994)

    Article  Google Scholar 

  • Pang, S.T., Lin, F.W., Chuang, C.K., Yang, H.W.: Co-delivery of docetaxel and p 44/42 MAPK siRNA using PSMA antibody-conjugated BSAPEI layer-by-layer NPs for prostate cancer target therapy. Macromolecular. Bioscience 17(5), 1600421

    Google Scholar 

  • Park, T.: Degradation of poly(D,L-lactic acid) microspheres: effect of molecular weight. J. Controlled Release 30(2), 161–173 (1994)

    Article  Google Scholar 

  • Patel, J., Amrutiya, J., Bhatt, P., Javia, A., Jain, M., Misra, A.: Targeted delivery of monoclonal antibody conjugated docetaxel loaded PLGA NPs into EGFR overexpressed lung tumor cells. J. Microencapsul. 35(2), 204–217 (2018)

    Article  Google Scholar 

  • Patel, N.R., Rathi, A., Mongayt, D., Torchilin, V.P.: Reversal of multidrug resistance by co-delivery of tariquidar (XR9576) and paclitaxel using long-circulating liposomes. Int. J. Pharm. 416, 296–299 (2011)

    Article  Google Scholar 

  • Patrick, M.R., Blair, I.J., Feneck, R.O., Sebel, P.S.: A comparison of the haemodynamic effects of propofol (‘Diprivan’) and thiopentone in patients with coronary artery disease. Postgrad. Med. J. 61, 23–27 (1985)

    Article  Google Scholar 

  • Peters, T.: Serum albumin. Adv. Protein Chem. 37, 161–245 (1985)

    Article  Google Scholar 

  • Ragelle, H., Danhier, F., Préat, V., Langer, R., Anderson, D.G.: Nanoparticle-based drug delivery systems: a commercial and regulatory outlook as the field matures. Expert Opin. Drug Deliv. 14(7), 851–864 (2016)

    Article  Google Scholar 

  • Rancan, F., Papakostas, D., Hadam, S., Hackbarth, S., Delair, T., Primard, C., et al.: Investigation of polylactic acid (PLA) NPs as drug delivery systems for local dermatotherapy. Pharm. Res. 26(8), 2027–2036 (2009)

    Article  Google Scholar 

  • Richard, B.M., Newton, P., Ott, L.R., Haan, D., Brubaker, A.N., Cole, P.I., et al.: The safety of EXPAREL® (bupivacaine liposome injectable suspension) administered by peripheral nerve block in rabbits and dogs. J. Drug Deliv. 2012, 962101 (2012)

    Article  Google Scholar 

  • Ruoslahti, E.: Peptides as targeting elements and tissue penetration devices for nanoparticles. Adv. Mater. 24(28), 3747–3756 (2012)

    Article  Google Scholar 

  • Schwick, H.G., Heide, K.: Immunochemistry and immunology of collagen and gelatin. Bibl. Haematol. 33, 111–125 (1969)

    Google Scholar 

  • Senel, S., Ikinci, G., Kaş, S., Yousefi-Rad, A., Sargon, M.F., Hincal, A.A.: Chitosan films and hydrogels of chlorhexidine gluconate for oral mucosal delivery. Int. J. Pharm. 93(2), 197–203 (2000)

    Article  Google Scholar 

  • Shen, S., Mao, C.Q., Yang, X.Z., Du, X.J., Liu, Y., Zhu, Y.H., et al.: Cationic lipid-assisted polymeric nanoparticle mediated GATA2 siRNA delivery for synthetic lethal therapy of KRAS mutant non-small-cell lung carcinoma. Mol. Pharm. 11, 2612–2622 (2014)

    Article  Google Scholar 

  • Shi, Y., Su, C., Cui, W., Li, H., Liu, L., Feng, B., et al.: Gefitinib loaded folate decorated bovine serum albumin conjugated carboxymethyl betacyclodextrin NPs enhance drug delivery and attenuate autophagy in folate receptor-positive cancer cells. J. Nanobiotechnology 12, 43 (2014)

    Article  Google Scholar 

  • Soares, P.I.P., Sousa, A.I., Silva, J.C., Ferreira, I.M.M., Novo, C.M.M., Borges, J.P.: Chitosan-based NPs as drug delivery systems for doxorubicin: optimization and modelling. Carbohyd. Polym. 20(147), 304–312 (2016)

    Article  Google Scholar 

  • Srivastava, A., Yadav, T., Sharma, S., Nayak, A., Kumari, A., Mishra, N.: Polymers in drug delivery. J. Biosci. Med. 4, 69–84 (2016)

    Google Scholar 

  • Steele, T., Huang, C., Widjaja, E., Boey, F., Loo, J., Venkatraman, S.: The effect of polyethylene glycol structure on paclitaxel drug release and mechanical properties of PLGA thin films. Acta Biomater. 7, 1973–1983 (2011)

    Article  Google Scholar 

  • Taheri, A., Dinarvand, R., Ahadi, F., Khorramizadeh, M.R., Atyabi, F.: The in vivo antitumor activity of LHRH targeted methotrexate human serum albumin NPs in 4T1 tumor-bearing Balb/c mice. Int. J. Pharm. 431, 183–189 (2012a)

    Google Scholar 

  • Taheri, A., Dinarvand, R., Atyabi, F., Ghahremani, M.H., Ostad, S.N.: Trastuzumab decorated methotrexate–human serum albumin conjugated NPs for targeted delivery to HER2 positive tumor cells. Eur. J. Pharm. Sci. 47(2), 331–40 (2012b)

    Google Scholar 

  • Tan, Y.L., Ho, H.K.: Navigating albumin based nanoparticles through various drug delivery routes. Drug Discov. Today 5, 1108–1114 (2018)

    Article  Google Scholar 

  • Tang, J., Zhang, L., Liu, Y., Zhang, Q., Qin, Y., Yin, Y., et al.: Synergistic targeted delivery of payload into tumor cells by dual-ligand liposomes co-modified with cholesterol anchored transferrin and TAT. Int. J. Pharm. 454(1), 31–40 (2013)

    Article  Google Scholar 

  • Thulasidasan, A.T., Retnakumari, A.P., Shankar, M., Vijayakurup, V., Anwar, S., Thankachan, S., et al.: Folic acid conjugation improves the bioavailability and chemosensitizing efficacy of curcumin-encapsulated PLGA-PEG NPs towards paclitaxel chemotherapy. Oncotarget 8(64), 107374–107389 (2017)

    Article  Google Scholar 

  • Vinogradov, S., Batrakova, E., Kabanov, A.: Poly(ethylene glycol)–polyethyleneimine NanoGel™ particles: novel drug delivery systems for antisense oligonucleotides. Colloids Surf., B 16(1–4), 291–304 (1999)

    Article  Google Scholar 

  • Wagner, A.M., Spencer, D.S., Peppas, N.A.: Advanced architectures in the design of responsive polymers for cancer nanomedicine. J. Appl. Polym. Sci. 135(24), 46154 (2018)

    Article  Google Scholar 

  • Wagner, S., Rothweiler, F., Anhorn, M.G., Sauer, D., Riemann, I., et al.: Enhanced drug targeting by attachment of an anti αv integrin antibody to doxorubicin loaded human serum albumin nanoparticles. Biomaterials 31(8), 2388–2398 (2010)

    Article  Google Scholar 

  • Wan, X., Zheng, X., Pang, X., Zhang, Z., Jing, T., et al.: The potential use of lapatinib loaded human serum albumin NPs in the treatment of triple-negative breast cancer. Int. J. Pharm. 484, 16–28 (2015)

    Article  Google Scholar 

  • Wang, J., Wu, Z., Pan, G., Ni, J., Xie, F., Jiang, B., et al.: Enhanced doxorubicin delivery to hepatocellular carcinoma cells via CD147 antibody-conjugated immunoliposomes. Nanomed. Nanotechnol. Biol. Med. 17 (2017), Article in Press

    Google Scholar 

  • Wang, M., Thanou, M.: Targeting NPs to cancer. Pharmacol. Res. 62(2), 90–99 (2010)

    Article  Google Scholar 

  • Wang, S., Mei, X.G., Goldberg, S.N., Ahmed, M., Lee, J.C., Gong, W., et al. (2016a). Does thermosensitive liposomal vinorelbine improve end-point survival after percutaneous radiofrequency ablation of liver tumors in a mouse model? Radiol. Soc. N. Am. J. 279(3), 762–772

    Article  Google Scholar 

  • Wang, W., Balk, M., Deng, Z., Wischke, C., Gossen, M., Behl, M, et al.: Engineering biodegradable micelles of polyethylenimine-based amphiphilic block copolymers for efficient DNA and siRNA delivery. J. Control. Release 28(242) 71–79 (2016b)

    Article  Google Scholar 

  • Wang, X., Zhen, X., Wang, J., Zhang, J., Wu, W., Jiang, X.: Doxorubicin delivery to 3D multicellular spheroids and tumors based on boronic acid-rich chitosan NPs. Biomaterials 34, 4667–4679 (2013)

    Article  Google Scholar 

  • Wang, Y., Li, P., Kong, L.: Chitosan-modified PLGA NPs with versatile surface for improved drug delivery. AAPS PharmSciTech. 14(2), 585–592 (2013a)

    Article  Google Scholar 

  • Wang, Y., Zhang, X., Yu, P., Li, C.: Glycopolymer micelles with reducible ionic cores for hepatocytes-targeting delivery of DOX. Int. J. Pharm. 441(1–2), 170–180 (2013b)

    Article  Google Scholar 

  • Weber, C., Coester, C., Kreuter, J., Langer, K.: Desolvation process and surface characterisation of protein NPs. Int. J. Pharm. 194(1), 91–102 (2000)

    Article  Google Scholar 

  • Wei, Y., Li, L., Xi, Y., Qian, S., Gao, Y., Zhang, J.: Sustained release and enhanced bioavailability of injectablescutellarin-loaded bovine serum albumin NPs. Int. J. Pharm. 476, 142–148 (2014)

    Article  Google Scholar 

  • Wen, X., Li, J., Cai, D., Yue, L., Wang, Q., Zhou, L., et al.: Anticancer efficacy of targeted shikonin liposomes modified with RGD in breast cancer cells. Molecules 23(2), 268 (2018)

    Article  Google Scholar 

  • Widera, A., Norouziyan, F., Shen, W.C.: Mechanisms of TfR-mediated transcytosis and sorting in epithelial cells and applications toward drug delivery. Adv. Drug Deliv. Rev. 55(11), 1439–1466 (2003)

    Article  Google Scholar 

  • Wilson, B., Ambika, R., Patel, D.K., Jenita, J.L., Priyadarshini, S.R.: NPs based on albumin: Preparation, characterizationand the use for 5-flurouracil delivery. Int. J. Biol. Macromol. 51, 874–878 (2012)

    Article  Google Scholar 

  • Xiao, J., Yu, H.: Gemcitabine conjugated chitosan and double antibodies (Abc-GC-Gemcitabine NPs) enhanced cytoplasmic uptake of gemcitabine and Inhibit proliferation and metastasis in human SW1990 pancreatic cancer cells. Med. Sci. Monit. 23, 1613–1620 (2017)

    Article  MathSciNet  Google Scholar 

  • Xu, L., Xu, S., Wang, H., Zhang, J., Zhang, J., Chen, Z., Pan, L., et al.: Enhancing the efficacy and safety of doxorubicin against hepatocellular carcinoma through a modular assembly approach: the combination of polymeric prodrug design, nanoparticle encapsulation, and cancer cell-specific drug targeting. ACS Appl. Mater. Interfaces 10(4), 3229–3240 (2018)

    Article  Google Scholar 

  • Xu, W., Siddiqui, I.A., Nihal, M., Pilla, S., Rosenthal, K., Mukhtar, H., et al.: Aptamer-conjugated and doxorubicin-loaded unimolecular micelles for targeted therapy of prostate cancer. Biomaterials 34(21), 5244–5253 (2013)

    Article  Google Scholar 

  • Yang, C., Neshatian, M., Prooijen, M.V., Chithrani, D.B.: Cancer nanotechnology: enhanced therapeutic response using peptide-modified gold NPs. J. Nanosci. Nanotechnol. 14(7), 4813–4819 (2014)

    Article  Google Scholar 

  • Yang, L., Cui, F., Cun, D., Tao, A., Shi, K., Lin, W.: Preparation, characterization and biodistribution of the lactone form of 10-hydroxycamptothecin (HCPT)-loaded bovine serum albumin (BSA) NPs. Int. J. Pharm. 340, 163–172 (2007)

    Article  Google Scholar 

  • Yang, X., Yang, S., Chai, H., Yang, Z., Lee, R.J., Liao, W., et al.: A novel isoquinoline derivative anticancer agent and its targeted delivery to tumor cells using transferrin-conjugated liposomes. Public Libr. Sci. 10(8), e0136649 (2015)

    Google Scholar 

  • Ye, F., Barrefelt, Å., Asem, H., Abedi-Valugerdi, M., El-Serafi, I., Saghafian, M., et al.: Biodegradable polymeric vesicles containing magnetic NPs, quantum dots and anticancer drugs for drug delivery and imaging. Biomaterials 35, 3885–3894 (2014)

    Article  Google Scholar 

  • Yeh, C.Y., Hsiao, J.K., Wang, Y.P., Lan, C.H., Wu, H.C.: Peptide-conjugated NPs for targeted imaging and therapy of prostate cancer. Biomaterials 99, 1–15 (2016)

    Article  Google Scholar 

  • Zhang, C., Gao, S., Jiang, W., Lin, S., Du, F., Li, Z., et al.: Targeted minicircle DNA delivery using folate-poly(ethylene glycol)-polyethylenimine as non-viral carrier. Biomaterials 31(23), 6075–6086 (2010)

    Article  Google Scholar 

  • Zhang, Y., Chan, H.F., Leong, K.W.: Advanced materials and processing for drug delivery: the past and the future. Adv. Drug Deliv. Rev. 65, 104–120 (2013)

    Article  Google Scholar 

  • Zhong, Y., Meng, F., Deng, C., Zhong, Z.: Ligand-directed active tumor-targeting polymeric NPs for cancer chemotherapy. Am. Chem. Soc. (ACS) 15(6), 1955–1969 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Kouchakzadeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Asfia, S., Mohammadian, M., Kouchakzadeh, H. (2019). Polymeric Nanoparticulates as Efficient Anticancer Drugs Delivery Systems. In: Rahmandoust, M., Ayatollahi, M. (eds) Nanomaterials for Advanced Biological Applications. Advanced Structured Materials, vol 104. Springer, Cham. https://doi.org/10.1007/978-3-030-10834-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10834-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10833-5

  • Online ISBN: 978-3-030-10834-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics