Skip to main content

Resolvent Estimates Near the Boundary of the Range of the Symbol

  • Chapter
  • First Online:
  • 682 Accesses

Part of the book series: Pseudo-Differential Operators ((PDO,volume 14))

Abstract

In this chapter, which closely follows, we study bounds on the resolvent of a non-self-adjoint h-pseudodifferential operator P with (semi-classical) principal symbol p when h → 0, when the spectral parameter is in a neighborhood of certain points on the boundary of the range of p. In Chap. 6 we have already described a very precise result of W. Bordeaux Montrieux in dimension 1. Here we consider a more general situation; the dimension can be arbitrary and we allow for more degenerate behaviour. The results will not be quite as precise as in the one-dimensional case.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Roughly, we say that two distributions u 1 and u 2 of temperate growth, also with respect to h, are equal microlocally near a point in phase space, if there exists an h-pseudodifferential operator χ (used very much as a cutoff function in ordinary distribution theory) with symbol equal to 1 near that point, such that χ(u 1 − u 2) is \({\mathcal {O}}(h^\infty ) \) in L 2. Roughly, the similar notion for operators is obtained by using cutoffs to the right and to the left. We are here at the level of ideas only and avoid formal definitions.

References

  1. B. Bellis, Subelliptic resolvent estimates for non-self-adjoint semiclassical Schrödinger operators. J. Spectral Theory 9(1), 171–194 (2019). https://arxiv.org/abs/1609.00436

    Article  MathSciNet  Google Scholar 

  2. W. Bordeaux Montrieux, Loi de Weyl presque sûre et résolvante pour des opérateurs différentiels non-autoadjoints, thèse, CMLS, Ecole Polytechnique, 2008. https://pastel.archives-ouvertes.fr/pastel-00005367

  3. L.S. Boulton, Non-self-adjoint harmonic oscillator, compact semigroups and pseudospectra. J. Operator Theory 47(2), 413–429 (2002)

    MathSciNet  MATH  Google Scholar 

  4. E.B. Davies, Pseudospectra, the harmonic oscillator and complex resonances. Proc. Roy. Soc. Lond. A 455, 585–599 (1999)

    Article  Google Scholar 

  5. N. Dencker, J. Sjöstrand, M. Zworski, Pseudospectra of semiclassical (pseudo-)differential operators, Commun. Pure Appl. Math. 57(3), 384–415 (2004)

    Article  MathSciNet  Google Scholar 

  6. M. Dimassi, J. Sjöstrand, Spectral Asymptotics in the Semi-Classical Limit. London Mathematical Society Lecture Note Series, vol. 268 (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  7. B. Helffer, J. Sjöstrand, Résonances en limite semi-classique. Mém. Soc. Math. France (N.S.), vol. 24–25 (Gauthier-Villars, Paris, 1986), pp. 1–228

    Article  Google Scholar 

  8. M. Hitrik, L. Pravda-Starov, Spectra and semigroup smoothing for non-elliptic quadratic operators. Math. Ann. 344(4), 801–846 (2009)

    Article  MathSciNet  Google Scholar 

  9. M. Hitrik, K. Pravda-Starov, Eigenvalues and subelliptic estimates for non-selfadjoint semiclassical operators with double characteristics. Ann. Inst. Fourier (Grenoble) 63(3), 985–1032 (2013)

    Article  MathSciNet  Google Scholar 

  10. M. Hitrik, K. Pravda-Starov, J. Viola, Short-time asymptotics of the regularizing effect for semigroups generated by quadratic operators. Bull. Sci. Math. 141(7), 615–675 (2017). https://arxiv.org/abs/1510.01992

    Article  MathSciNet  Google Scholar 

  11. M. Hitrik, K. Pravda-Starov, J. Viola, From semigroups to subelliptic estimates for quadratic operators. Trans. Am. Math. Soc. 370(10), 7391–7415 (2018). https://arxiv.org/abs/1510.02072

    Article  MathSciNet  Google Scholar 

  12. L. Hörmander, The Analysis of Linear Partial Differential Operators. I–IV, Grundlehren der Mathematischen Wissenschaften, vols. 256, 257, 274, 275 (Springer, Berlin, 1983/1985)

    Google Scholar 

  13. V.V. Kučerenko, Asymptotic solutions of equations with complex characteristics (Russian). Mat. Sb. (N.S.) 95(137), 163–213, 327 (1974)

    Google Scholar 

  14. B. Lascar, J. Sjöstrand, Equation de Schrödinger et propagation des singularités pour des opérateurs pseudodifférentiels à caractéristiques réelles de multiplicité variable I. Astérisque 95, 467–523 (1982)

    MATH  Google Scholar 

  15. V.P. Maslov, Operational Methods. Translated from the Russian by V. Golo, N. Kulman, G. Voropaeva (Mir Publishers, Moscow, 1976)

    Google Scholar 

  16. O. Matte, Correlation asymptotics for non-translation invariant lattice spin systems. Math. Nachr. 281(5), 721–759 (2008)

    Article  MathSciNet  Google Scholar 

  17. A. Melin, J. Sjöstrand, Fourier integral operators with complex phase functions and parametrix for an interior boundary value problem. Commun. Partial Differ. Equ. 1(4), 313–400 (1976)

    Article  MathSciNet  Google Scholar 

  18. A. Melin, J. Sjöstrand, Determinants of pseudodifferential operators and complex deformations of phase space. Methods Appl. Anal. 9(2), 177–238 (2002). https://arxiv.org/abs/math/0111292

    MathSciNet  MATH  Google Scholar 

  19. A. Menikoff, J. Sjöstrand, On the eigenvalues of a class of hypo-elliptic operators. Math. Ann. 235, 55–85 (1978)

    Article  MathSciNet  Google Scholar 

  20. O. Rouby, S. Vũ Ngọc, J. Sjöstrand, Analytic Bergman operators in the semiclassical limit (2018). https://arxiv.org/abs/1808.00199

  21. J. Sjöstrand, Singularités analytiques microlocales. Astérisque 95 (Société Mathématique de France, Paris, 1982), pp. 1–166

    Google Scholar 

  22. J. Sjöstrand, Eigenvalue distribution for non-self-adjoint operators with small multiplicative random perturbations. Ann. Fac. Sci. Toulouse 18(4), 739–795 (2009). http://arxiv.org/abs/0802.3584

    Article  MathSciNet  Google Scholar 

  23. J. Sjöstrand, Resolvent Estimates for Non-self-adjoint Operators via Semi-groups. International Mathematical Series, vol. 13, pp. 359–384 Around the research of Vladimir Maz’ya, III (Springer/Tamara Rozhkovskaya Publisher, Novosibirsk, 2010). http://arxiv.org/abs/0906.0094

    Google Scholar 

  24. J. Viola, Spectral projections and resolvent bounds for partially elliptic quadratic differential operators. J. Pseudo-Differ. Oper. Appl. 4, 145–221 (2013)

    Article  MathSciNet  Google Scholar 

  25. J. Viola, The norm of the non-self-adjoint harmonic oscillator semigroup. Integr. Equ. Oper. Theory 85(4), 513–538 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sjöstrand, J. (2019). Resolvent Estimates Near the Boundary of the Range of the Symbol. In: Non-Self-Adjoint Differential Operators, Spectral Asymptotics and Random Perturbations. Pseudo-Differential Operators, vol 14. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-10819-9_10

Download citation

Publish with us

Policies and ethics