Skip to main content

Algorithms and Complexity Results for the Capacitated Vertex Cover Problem

  • Conference paper
  • First Online:
SOFSEM 2019: Theory and Practice of Computer Science (SOFSEM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11376))

Abstract

We study the capacitated vertex cover problem (CVC). In this natural extension to the vertex cover problem, each vertex has a predefined capacity which indicates the total amount of edges that it can cover. In this paper, we study the complexity of the CVC problem. We give NP-completeness proofs for the problem on modular graphs, tree-convex graphs, and planar bipartite graphs of maximum degree three. For the first two graph classes, we prove that no subexponential-time algorithm exist for CVC unless the ETH fails.

Furthermore, we introduce a series of exact exponential-time algorithms which solve the CVC problem on several graph classes in \(\mathcal {O}((2 - \epsilon )^n)\) time, for some \(\epsilon > 0\). Amongst these graph classes are, graphs of maximum degree three, other degree-bounded graphs, regular graphs, graphs with large matchings, c-sparse graphs, and c-dense graphs. To obtain these results, we introduce an FPT treewidth algorithm which runs in \(\mathcal {O}^*((k + 1)^{tw})\) or \(\mathcal {O}^*(k^k)\) time, where k is the solution size and tw the treewidth, improving an earlier algorithm from Dom et al.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that Vertex Cover equals Independet Set and Clique when considered from the viewpoint of exact exponential-time algorithms.

References

  1. Bandelt, H.J.: Hereditary modular graphs. Combinatorica 8(2), 149–157 (1988)

    Article  MathSciNet  Google Scholar 

  2. Bodlaender, H.L., et al.: Open problems in parameterized and exact computation - IWPEC 2008. Technical report UU-CS-2008-017, Department of Information and Computing Sciences, Utrecht University (2008)

    Google Scholar 

  3. Bourgeois, N., Escoffier, B., Paschos, V.Th., van Rooij, J.M.M.: Fast algorithms for max independent set. Algorithmica 62(1), 382–415 (2012)

    Article  MathSciNet  Google Scholar 

  4. Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theoret. Comput. Sci. 411(40), 3736–3756 (2010)

    Article  MathSciNet  Google Scholar 

  5. Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J.M.M., Wojtaszczyk, J.O.: Solving connectivity problems parameterized by treewidth in single exponential time. arXiv.org. The Computing Research Repository abs/1103.0534 (2011)

    Google Scholar 

  6. Cygan, M., Pilipczuk, M.: Exact and approximate bandwidth. Theoret. Comput. Sci. 411(40–42), 3701–3713 (2010)

    Article  MathSciNet  Google Scholar 

  7. Cygan, M., Pilipczuk, M., Wojtaszczyk, J.O.: Capacitated domination faster than O(\(2^n\)). Inf. Process. Lett. 111(23), 1099–1103 (2011)

    Article  MathSciNet  Google Scholar 

  8. Dom, M., Lokshtanov, D., Saurabh, S., Villanger, Y.: Capacitated domination and covering: a parameterized perspective. In: Grohe, M., Niedermeier, R. (eds.) IWPEC 2008. LNCS, vol. 5018, pp. 78–90. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79723-4_9

    Chapter  MATH  Google Scholar 

  9. Fomin, F.V., Grandoni, F., Kratsch, D.: A measure & conquer approach for the analysis of exact algorithms. J. ACM 56(5), 25:1–25:32 (2009)

    Article  MathSciNet  Google Scholar 

  10. Fomin, F.V., Høie, K.: Pathwidth of cubic graphs and exact algorithms. Inf. Process. Lett. 97(5), 191–196 (2006)

    Article  MathSciNet  Google Scholar 

  11. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. TTCSAES. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16533-7

    Book  MATH  Google Scholar 

  12. Fomin, F.V., Kratsch, D., Woeginger, G.J.: Exact (exponential) algorithms for the dominating set problem. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 245–256. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30559-0_21

    Chapter  Google Scholar 

  13. Fomin, F.V., Thilikos, D.M.: A simple and fast approach for solving problems on planar graphs. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 56–67. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24749-4_6

    Chapter  Google Scholar 

  14. Fürer, M., Raghavachari, B.: Approximating the minimum degree spanning tree to within one from the optimal degree. In: 3rd Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 1992. pp. 317–324. Society for Industrial and Applied Mathematics (1992)

    Google Scholar 

  15. Garey, M.R., Johnson, D.S.: The rectilinear steiner tree problem is NP-complete. SIAM J. Appl. Math. 32(4), 826–834 (1977)

    Article  MathSciNet  Google Scholar 

  16. Grandoni, F.: A note on the complexity of minimum dominating set. J. Discret. Algorithms 4(2), 209–214 (2006)

    Article  MathSciNet  Google Scholar 

  17. Guha, S., Hassin, R., Khuller, S., Or, E.: Capacitated vertex covering with applications. In: 13th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2002, pp. 858–865. Society for Industrial and Applied Mathematics (2002)

    Google Scholar 

  18. Guo, J., Niedermeier, R., Wernicke, S.: Parameterized complexity of vertex cover variants. Theory Comput. Syst. 41(3), 501–520 (2007)

    Article  MathSciNet  Google Scholar 

  19. Henning, M.A., Yeo, A.: Tight lower bounds on the size of a maximum matching in a regular graph. Graphs Comb. 23(6), 647–657 (2007)

    Article  MathSciNet  Google Scholar 

  20. Impagliazzo, R., Paturi, R.: On the complexity of \(k\)-SAT. J. Comput. Syst. Sci. 62(2), 367–375 (2001)

    Article  MathSciNet  Google Scholar 

  21. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)

    Article  MathSciNet  Google Scholar 

  22. Iwata, Y.: A faster algorithm for dominating set analyzed by the potential method. In: Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 41–54. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28050-4_4

    Chapter  Google Scholar 

  23. Jian, T.: An \({O}(2^{0.304n})\) algorithm for solving maximum independent set problem. IEEE Trans. Comput. 35(9), 847–851 (1986)

    Google Scholar 

  24. Kloks, T. (ed.): Treewidth. LNCS, vol. 842. Springer, Heidelberg (1994). https://doi.org/10.1007/BFb0045375

    Book  MATH  Google Scholar 

  25. Kneis, J., Langer, A., Rossmanith, P.: A fine-grained analysis of a simple independent set algorithm. In: 29th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2009, pp. 287–298. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2009)

    Google Scholar 

  26. Liedloff, M., Todinca, I., Villanger, Y.: Solving capacitated dominating set by using covering by subsets and maximum matching. Discret. Appl. Math. 168, 60–68 (2014)

    Article  MathSciNet  Google Scholar 

  27. Nederlof, J., van Rooij, J.M.M., van Dijk, T.C.: Inclusion/exclusion meets measure and conquer. Algorithmica 69, 685–740 (2014)

    MathSciNet  MATH  Google Scholar 

  28. Robson, J.M.: Algorithms for maximum independent sets. J. Algorithms 7(3), 425–440 (1986)

    Article  MathSciNet  Google Scholar 

  29. Robson, J.M.: Finding a maximum independent set in time \({O}(2^{n/4})\). Technical report, Laboratoire Bordelais de Recherche en Informatique, Université Bordeaux I, 1251–01, Bordeaux, France (2001)

    Google Scholar 

  30. van Rooij, S.B.: A search for faster algorithms for the capacitated vertex cover problem. Master’s thesis. Department of Information and Computing Sciences, Utrecht University (2018)

    Google Scholar 

  31. van Rooij, J.M.M., Bodlaender, H.L.: Exact algorithms for dominating set. Discret. Appl. Math. 159(17), 2147–2164 (2011)

    Article  MathSciNet  Google Scholar 

  32. Schiermeyer, I.: Efficiency in exponential time for domination-type problems. Discret. Appl. Math. 156(17), 3291–3297 (2008)

    Article  MathSciNet  Google Scholar 

  33. Tarjan, R.E., Trojanowski, A.E.: Finding a maximum independent set. SIAM J. Comput. 6(3), 537–546 (1977)

    Article  MathSciNet  Google Scholar 

  34. Xiao, M., Nagamochi, H.: Exact algorithms for maximum independent set. Inf. Comput. 255, 126–146 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan M. M. van Rooij .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

van Rooij, S.B., van Rooij, J.M.M. (2019). Algorithms and Complexity Results for the Capacitated Vertex Cover Problem. In: Catania, B., Královič, R., Nawrocki, J., Pighizzini, G. (eds) SOFSEM 2019: Theory and Practice of Computer Science. SOFSEM 2019. Lecture Notes in Computer Science(), vol 11376. Springer, Cham. https://doi.org/10.1007/978-3-030-10801-4_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10801-4_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10800-7

  • Online ISBN: 978-3-030-10801-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics