Skip to main content

Minimizing the Cost of Team Exploration

  • Conference paper
  • First Online:
  • 658 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11376))

Abstract

A group of mobile agents is given a task to explore an edge-weighted graph G, i.e., every vertex of G has to be visited by at least one agent. There is no centralized unit to coordinate their actions, but they can freely communicate with each other. The goal is to construct a deterministic strategy which allows agents to complete their task optimally. In this paper we are interested in a cost-optimal strategy, where the cost is understood as the total distance traversed by agents coupled with the cost of invoking them. Two graph classes are analyzed, rings and trees, in the off-line and on-line setting, i.e., when a structure of a graph is known and not known to agents in advance. We present algorithms that compute the optimal solutions for a given ring and tree of order n, in O(n) time units. For rings in the on-line setting, we give the 2-competitive algorithm and prove the lower bound of 3/2 for the competitive ratio for any on-line strategy. For every strategy for trees in the on-line setting, we prove the competitive ratio to be no less than 2, which can be achieved by the DFS algorithm.

Research partially supported by National Science Centre (Poland) grant number 2015/17/B/ST6/01887.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    After finishing the exploration, agents do not have to come back to the homebase.

  2. 2.

    One may notice, that in order to reduce the number of time units of the algorithm, agents moves, when possible, should be perform simultaneously.

  3. 3.

    There exist cost-optimal strategies that can use more than \(\varLambda _v.k\) agents. Indeed, if \(d(v,\varLambda _v.u_l) = d(r,v) + q\) reusing the agent and calling a new one generates equal cost.

References

  1. Bellmore, M., Nemhauser, G.L.: The traveling salesman problem: a survey. Oper. Res. 16(3), 538–558 (1968)

    Article  MathSciNet  Google Scholar 

  2. Berbeglia, G., Cordeau, J.F., Gribkovskaia, I., Laporte, G.: Static pickup and delivery problems: a classification scheme and survey. Top 15(1), 1–31 (2007)

    Article  MathSciNet  Google Scholar 

  3. Brass, P., Vigan, I., Xu, N.: Improved analysis of a multirobot graph exploration strategy. In: 2014 13th International Conference on Control Automation Robotics & Vision (ICARCV), pp. 1906–1910. IEEE (2014)

    Google Scholar 

  4. Czyzowicz, J., Diks, K., Moussi, J., Rytter, W.: Energy-optimal broadcast in a tree with mobile agents. In: Fernández Anta, A., Jurdzinski, T., Mosteiro, M.A., Zhang, Y. (eds.) ALGOSENSORS 2017. LNCS, vol. 10718, pp. 98–113. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72751-6_8

    Chapter  Google Scholar 

  5. Das, S., Dereniowski, D., Karousatou, C.: Collaborative exploration by energy-constrained mobile robots. In: Scheideler, C. (ed.) Structural Information and Communication Complexity. LNCS, vol. 9439, pp. 357–369. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25258-2_25

    Chapter  Google Scholar 

  6. Dereniowski, D., Disser, Y., Kosowski, A., Pajak, D., Uznanski, P.: Fast collaborative graph exploration. Inf. Comput. 243, 37–49 (2015)

    Article  MathSciNet  Google Scholar 

  7. Disser, Y., Mousset, F., Noever, A., Škorić, N., Steger, A.: A general lower bound for collaborative tree exploration. In: Das, S., Tixeuil, S. (eds.) SIROCCO 2017. LNCS, vol. 10641, pp. 125–139. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72050-0_8

    Chapter  Google Scholar 

  8. Dynia, M., Korzeniowski, M., Schindelhauer, C.: Power-aware collective tree exploration. In: Grass, W., Sick, B., Waldschmidt, K. (eds.) ARCS 2006. LNCS, vol. 3894, pp. 341–351. Springer, Heidelberg (2006). https://doi.org/10.1007/11682127_24

    Chapter  Google Scholar 

  9. Dynia, M., Łopuszański, J., Schindelhauer, C.: Why robots need maps. In: Prencipe, G., Zaks, S. (eds.) SIROCCO 2007. LNCS, vol. 4474, pp. 41–50. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72951-8_5

    Chapter  Google Scholar 

  10. Fomin, F., Thilikos, D.: An annotated bibliography on guaranteed graph searching. Theor. Comput. Sci. 399(3), 236–245 (2008)

    Article  MathSciNet  Google Scholar 

  11. Fraigniaud, P., Gasieniec, L., Kowalski, D.R., Pelc, A.: Collective tree exploration. Networks 48(3), 166–177 (2006)

    Article  MathSciNet  Google Scholar 

  12. Golden, B.L., Raghavan, S., Wasil, E.A.: The Vehicle Routing Problem: Latest Advances and New Challenges, vol. 43. Springer, Heidelberg (2008). https://doi.org/10.1007/978-0-387-77778-8

    Book  MATH  Google Scholar 

  13. Higashikawa, Y., Katoh, N., Langerman, S., Tanigawa, S.: Online graph exploration algorithms for cycles and trees by multiple searchers. J. Comb. Optim. 28(2), 480–495 (2014)

    Article  MathSciNet  Google Scholar 

  14. Kumar, S.N., Panneerselvam, R.: A survey on the vehicle routing problem and its variants. Intell. Inf. Manag. 4(03), 66 (2012)

    Google Scholar 

  15. Ortolf, C., Schindelhauer, C.: Online multi-robot exploration of grid graphs with rectangular obstacles. In: Proceedings of the Twenty-Fourth Annual ACM Symposium on Parallelism in Algorithms and Architectures, pp. 27–36. ACM (2012)

    Google Scholar 

  16. Vaishnav, P., Choudhary, N., Jain, K.: Traveling salesman problem using genetic algorithm: a survey. Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol. 2(3), 105–108 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorota Osula .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Osula, D. (2019). Minimizing the Cost of Team Exploration. In: Catania, B., Královič, R., Nawrocki, J., Pighizzini, G. (eds) SOFSEM 2019: Theory and Practice of Computer Science. SOFSEM 2019. Lecture Notes in Computer Science(), vol 11376. Springer, Cham. https://doi.org/10.1007/978-3-030-10801-4_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10801-4_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10800-7

  • Online ISBN: 978-3-030-10801-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics