Skip to main content

Lackadaisical Quantum Walks with Multiple Marked Vertices

  • Conference paper
  • First Online:
SOFSEM 2019: Theory and Practice of Computer Science (SOFSEM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11376))

Abstract

The concept of lackadaisical quantum walk – quantum walk with self loops – was first introduced for discrete-time quantum walk on one-dimensional line [8]. Later it was successfully applied to improve the running time of the spacial search on two-dimensional grid [16].

In this paper we study search by lackadaisical quantum walk on the two-dimensional grid with multiple marked vertices. First, we show that the lackadaisical quantum walk, similarly to the regular (non-lackadaisical) quantum walk, has exceptional configuration, i.e. placements of marked vertices for which the walk has no speed-up over the classical exhaustive search. Next, we demonstrate that the weight of the self-loop suggested in [16] is not optimal for multiple marked vertices. And, last, we show how to adjust the weight of the self-loop to overcome the aforementioned problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The numerical results in [16] show that probability of finding a marked vertex is close to 1 and approaches 1 as N goes to infinity.

References

  1. Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48(2), 1687–1690 (1993)

    Article  Google Scholar 

  2. Ambainis, A., Kempe, J., Rivosh, A.: Coins make quantum walks faster. In: Proceedings of the 16th ACM-SIAM Symposium on Discrete Algorithms, pp. 1099–1108 (2005)

    Google Scholar 

  3. Ambainis, A., Rivosh, A.: Quantum walks with multiple or moving marked locations. In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P., Bieliková, M. (eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 485–496. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-77566-9_42

    Chapter  Google Scholar 

  4. Farhi, E., Gutmann, S.: Quantum computation and decision trees. Phys. Rev. A 58, 915–928 (1998)

    Article  MathSciNet  Google Scholar 

  5. Nahimovs, N., Rivosh, A.: Exceptional configurations of quantum walks with Grover’s coin. In: Kofroň, J., Vojnar, T. (eds.) MEMICS 2015. LNCS, vol. 9548, pp. 79–92. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29817-7_8

    Chapter  Google Scholar 

  6. Nahimovs, N., Rivosh, A.: Quantum walks on two-dimensional grids with multiple marked locations. In: Proceedings of SOFSEM 2016, vol. 9587, pp. 381–391 (2016). arXiv:quant-ph/150703788

  7. Nahimovs, N., Santos, R.A.M.: Adjacent vertices can be hard to find by quantum walks. In: Steffen, B., Baier, C., van den Brand, M., Eder, J., Hinchey, M., Margaria, T. (eds.) SOFSEM 2017. LNCS, vol. 10139, pp. 256–267. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-51963-0_20

    Chapter  Google Scholar 

  8. Inui, N., Konno, N., Segawa, E.: One-dimensional three-state quantum walk. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(5), 168–191 (2005)

    Article  Google Scholar 

  9. Portugal, R.: Quantum Walks and Search Algorithms. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-6336-8

    Book  MATH  Google Scholar 

  10. Reitzner, D., Nagaj, D., Buzek, V.: Quantum walks. Acta Physica Slovaca 61(6), 603–725 (2011). arxiv.org/abs/1207.7283

  11. Saha, A., Majumdar, R., Saha, D., Chakrabarti, A., Sur-Kolay, S.: Search of clustered marked states with lackadaisical quantum walks (2018). arXiv:1804.01446

  12. Shenvi, N., Kempe, J., Whaley, K.B.: A quantum random walk search algorithm. Phys. Rev. A 67, 052307 (2003)

    Article  Google Scholar 

  13. Stefanak, M., Bezdekova, I., Jex, I.: Limit distributions of three-state quantum walks: the role of coin eigenstates. Phys. Rev. A 90(1), 124–129 (2014)

    Article  Google Scholar 

  14. Wong, T.G.: Grover search with lackadaisical quantum walks. J. Phys. A Math. Gen. 48 (2015)

    Google Scholar 

  15. Wong, T.G.: Spatial search by continuous-time quantum walk with multiple marked vertices. Quantum Inf. Process. 15(4), 1411–1443 (2016)

    Article  MathSciNet  Google Scholar 

  16. Wong, T.G.: Faster search by lackadaisical quantum walk. Quantum Inf. Process. 17, 68 (2018)

    Article  MathSciNet  Google Scholar 

  17. Wong, T.G., Ambainis, A.: Quantum search with multiple walk steps per oracle query. Phys. Rev. A 92, 0022338 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolajs Nahimovs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nahimovs, N. (2019). Lackadaisical Quantum Walks with Multiple Marked Vertices. In: Catania, B., Královič, R., Nawrocki, J., Pighizzini, G. (eds) SOFSEM 2019: Theory and Practice of Computer Science. SOFSEM 2019. Lecture Notes in Computer Science(), vol 11376. Springer, Cham. https://doi.org/10.1007/978-3-030-10801-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10801-4_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10800-7

  • Online ISBN: 978-3-030-10801-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics