Skip to main content

Delay-Time Maintenance Models for Technical Systems

  • Chapter
  • First Online:
  • 953 Accesses

Part of the book series: Springer Series in Reliability Engineering ((RELIABILITY))

Abstract

The chapter presents a literature review on delay-time modelling for single- and multi-unit (complex) systems. First, there are introduced the main definitions connected with this maintenance approach. Later, there is presented the analysis of known maintenance models being developed in this research area. The maintenance models for single-unit systems assume two-stage or three-stage failure processes implementation. The optimum policies are discussed, and their several modified and extended models are presented. The main extensions include imperfect inspection implementation, postponed replacement performance, or different types of failures investigation. The classification also includes optimality criterion, planning horizon, and used modelling method. In the case of complex systems, the discussed problems regard to e.g. models’ parameters estimation issues, case studies analysis, or hybrid modelling approach implementation. The main extensions of the developed models are discussed and summarized. At last, the main development directions in delay-time-based maintenance modelling are presented in a graphical form. The brief summary of the conducted literature review is provided with indicating the main research gaps in this modelling area.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Akbarov A, Christer AH, Wang W (2008) Problem identification in maintenance modelling: a case study. Int J Prod Res 46(4):1031–1046. https://doi.org/10.1080/00207540600960708

    Article  MATH  Google Scholar 

  2. Alzubaidi HJ (1993) Maintenance modelling of a major hospital complex. Ph.D. thesis, University of Salford, Salford

    Google Scholar 

  3. Andrawus JA, Watson J, Kishk M (2007) Wind turbine maintenance optimization: principles of quantitative maintenance optimization. Wind Eng 31(2):101–110. https://doi.org/10.1260/030952407781494467

    Article  Google Scholar 

  4. Andrawus JA, Watson J, Kishk M, Gordon H (2008) Optimisation of wind turbine inspection intervals. Wind Eng 32(5):477–490. https://doi.org/10.1260/030952408786411921

    Article  Google Scholar 

  5. Apeland S, Scarf PA (2003) A fully subjective approach to modelling inspection maintenance. Eur J Oper Res 148:410–425. https://doi.org/10.1016/S0377-2217(02)00356-9

    Article  MATH  Google Scholar 

  6. Attia AF (1997) Estimation of the reliability function using the delay-time models. Microelectron Reliab 37(2):323–327

    Article  Google Scholar 

  7. Aven T (2009) Optimal test interval for a monotone safety system. J Appl Probab 46:330–341. https://doi.org/10.1239/jap/1245676090

    Article  MathSciNet  MATH  Google Scholar 

  8. Aven T, Castro IT (2009) A delay-time model with safety constraint. Reliab Eng Syst Saf 94:261–267. https://doi.org/10.1016/j.ress.2008.03.004

    Article  Google Scholar 

  9. Baker RD, Christer AH (1994) Review of delay-time OR modelling of engineering aspects of maintenance. Eur J Oper Res 73:407–422. https://doi.org/10.1016/0377-2217(94)90234-8

    Article  MATH  Google Scholar 

  10. Baker RD, Scarf PA (1995) Can models fitted to small data samples lead to maintenance policies with near-optimum cost? IMA J Math Appl Bus Ind 6:3–12. https://doi.org/10.1093/imaman/6.1.3

    Article  MATH  Google Scholar 

  11. Baker RD, Scarf PA, Wang W (1997) A delay-time model for repairable machinery: maximum likelihood estimation of optimum inspection intervals. IMA J Math Appl Bus Ind 8:83–92. https://doi.org/10.1093/imaman/8.1.83

    Article  MATH  Google Scholar 

  12. Baker RD, Wang W (1993) Developing and testing the delay-time model. J Oper Res Soc 44:361–374. https://doi.org/10.1057/jors.1993.66

    Article  MATH  Google Scholar 

  13. Baker RD, Wang W (1992) Estimating the delay-time distribution of faults in repairable machinery from failure data. IMA J Math Appl Bus Ind 3:259–281. https://doi.org/10.1093/imaman/3.4.259

    Article  Google Scholar 

  14. Berrade MD, Cavalcante CAV, Scarf PA (2017) A study of postponed replacement in a delay time model. Reliab Eng Syst Saf 168:70–79. https://doi.org/10.1016/j.ress.2017.04.006

    Article  Google Scholar 

  15. Cai J, Zhu L (2011) A delay-time model with imperfect inspection for aircraft structure subject to a finite time horizon. In: Proceedings of IEEE international conference on grey systems and intelligent services 2011, Nanjing, China, 15–18 Sept 2011, pp 716–719. https://doi.org/10.1109/gsis.2011.6044102

  16. Carr MJ, Christer AH (2003) Incorporating the potential for human error in maintenance models. J Oper Res Soc 54:1249–1253. https://doi.org/10.1057/palgrave.jors.2601634

    Article  MATH  Google Scholar 

  17. Cavalcante CAV, Scarf PA, De Almeida AT (2011) A study of a two-phase inspection policy for a preparedness system with a defective state and heterogeneous lifetime. Reliab Eng Syst Saf 96:627–635. https://doi.org/10.1016/j.ress.2010.12.004

    Article  Google Scholar 

  18. Cerone P (1993) Inspection interval for maximum future reliability using the delay time model. Eur J Oper Res 68:236–250

    Article  MATH  Google Scholar 

  19. Cerone P (1991) On a simplified delay time model of reliability of equipment subject to inspection monitoring. J Oper Res Soc 42(6):505–511. https://doi.org/10.1057/jors.1991.98

    Article  MATH  Google Scholar 

  20. Chilcott JB, Christer AH (1991) Modelling of condition based maintenance at the coal face. Int J Prod Econ 22:1–11

    Article  Google Scholar 

  21. Cho ID, Parlar M (1991) A survey of maintenance models for multi-unit systems. Eur J Oper Res 51(1):1–23

    Article  Google Scholar 

  22. Choi KM (1997) Semi-Markov and delay time models of maintenance. Ph.D. thesis, University of Salford, UK

    Google Scholar 

  23. Christer AH (2002) Review of delay time analysis for modelling plant maintenance. In: Osaki S (ed) Stochastic models in reliability and maintenance. Springer, Berlin

    Google Scholar 

  24. Christer AH (1999) Developments in delay time analysis for modelling plant maintenance. J Oper Res Soc 50:1120–1137

    Article  MATH  Google Scholar 

  25. Christer AH (1987) Delay-time model of reliability of equipment subject to inspection monitoring. J Oper Res Soc 38(4):329–334

    Article  MATH  Google Scholar 

  26. Christer AH (1982) Modelling inspection policies for building maintenance. J Oper Res Soc 33:723–732

    Article  Google Scholar 

  27. Christer AH, Lee C (2000) Refining the delay-time-based PM inspection model with non-negligible system downtime estimates of the expected number of failures. Int J Prod Econ 67:77–85. https://doi.org/10.1016/S0925-5273(00)00011-6

    Article  Google Scholar 

  28. Christer AH, Lee C (1997) Modelling ship operational reliability over a mission under regular inspections. J Oper Res Soc 48:688–699

    Article  MATH  Google Scholar 

  29. Christer AH, Lee C, Wang W (2000) A data deficiency based parameter estimating problem and case study in delay time PM modelling. Int J Prod Econ 67:63–76. https://doi.org/10.1016/S0925-5273(00)00010-4

    Article  Google Scholar 

  30. Christer AH, Redmond DF (1992) Revising models of maintenance and inspection. Int J Prod Econ 24:227–234

    Article  Google Scholar 

  31. Christer AH, Redmond DF (1990) A recent mathematical development in maintenance theory. IMA J Math Appl Bus Ind 2:97–108

    MathSciNet  MATH  Google Scholar 

  32. Christer AH, Waller WM (1984) An operational research approach to planned maintenance: modelling PM for a vehicle fleet. J Oper Res Soc 35(11):967–984

    Article  Google Scholar 

  33. Christer AH, Waller WM (1984) Reducing production downtime using delay-time analysis. J Oper Res Soc 35(6):499–512

    Article  Google Scholar 

  34. Christer AH, Waller WM (1984) Delay time models of industrial inspection maintenance problems. J Oper Res Soc 35(5):401–406

    Article  MATH  Google Scholar 

  35. Christer AH, Wang W (1995) A delay-time-based maintenance model of a multi-component system. IMA J Math Appl Bus Ind 6:205–222

    MATH  Google Scholar 

  36. Christer AH, Wang W (1992) A model of condition monitoring of a production plant. Int J Prod Res 30(9):2199–2211

    Article  Google Scholar 

  37. Christer AH, Wang W, Baker RD (1995) Modelling maintenance practice of production plant using the delay-time concept. IMA J Math Appl Bus Ind 6:67–83

    MATH  Google Scholar 

  38. Christer AH, Wang W, Choi K (2001) The robustness of the semi-Markov and delay time single-component inspection models to the Markov assumption. IMA J Manag Math 12:75–88. https://doi.org/10.1093/imaman/12.1.75

    Article  MathSciNet  MATH  Google Scholar 

  39. Christer AH, Wang W, Choi K (1998) The delay-time modelling of preventive maintenance of plant given limited PM data and selective repair at PM. IMA J Math Appl Med Biol 15:355–379

    MATH  Google Scholar 

  40. Christer AH, Wang W, Sharp J, Baker RD (1998) A case study of modelling preventive maintenance of production plant using subjective data. J Oper Res Soc 49:210–219

    Article  MATH  Google Scholar 

  41. Christer AH, Whitelaw J (1983) An operational research approach to breakdown maintenance: problem recognition. J Oper Res Soc 34(11):1041–1052

    Article  Google Scholar 

  42. Cui X (2002) Delay time modeling and software development. Ph.D. thesis, University of Salford, Salford

    Google Scholar 

  43. Cunningham A, Wang W, Zio E, Allanson D, Wall A, Wang J (2011) Application of delay-time analysis via Monte Carlo simulation. J Mar Eng Technol 10(3):57–72. https://doi.org/10.1080/20464177.2011.11020252

    Article  Google Scholar 

  44. Da Silva JG, Lopes RS (2018) An integrated framework for mode failure analysis, delay time model and multi-criteria decision-making for determination of inspection intervals in complex systems. J Loss Prev Process Ind 51:17–28. https://doi.org/10.1016/j.jlp.2017.10.013

    Article  Google Scholar 

  45. Dekker R, Scarf PA (1998) On the impact of optimisation models in maintenance decision making: the state of the art. Reliab Eng Syst Saf 60:111–119

    Google Scholar 

  46. Desa MI, Christer AH (2001) Modelling in the absence of data: a case study of fleet maintenance in a developing country. J Oper Res Soc 52:247–260. https://doi.org/10.1057/palgrave.jors.2601107

    Article  MATH  Google Scholar 

  47. Emovon I (2016) Inspection interval determination for mechanical/service systems using an integrated PROMETHEE method and delay time model. J Mech Eng Technol 8(1):13–29

    Google Scholar 

  48. Emovon I, Norman RA, Murphy AJ (2016) An integration of multi-criteria decision making techniques with a delay time model for determination of inspection intervals for marine machinery systems. Appl Ocean Res 59:65–82. https://doi.org/10.1016/j.apor.2016.05.008

    Article  Google Scholar 

  49. Flage R (2014) A delay time model with imperfect and failure-inducing inspections. Reliab Eng Syst Saf 124:1–12. https://doi.org/10.1016/j.ress.2013.11.009

    Article  Google Scholar 

  50. Guo R, Ascher H, Love E (2001) Towards practical and synthetical modelling of repairable systems. Econ Qual Control 16(2):147–182. https://doi.org/10.1515/EQC.2001.147

    Article  MathSciNet  MATH  Google Scholar 

  51. Guo R, Ascher H, Love E (2000) Generalized models of repairable systems a survey via stochastic processes formalism. ORiON 16(2):87–128

    Google Scholar 

  52. Jardine AKS, Hassounah MI (1990) An optimal vehicle-fleet inspection schedule. J Oper Res Soc 41(9):791–799

    Article  Google Scholar 

  53. Jia X, Christer AH (2002) A periodic testing model for a preparedness system with a defective state. IMA J Manag Math 13:39–49. https://doi.org/10.1093/imaman/13.1.39

    Article  MathSciNet  MATH  Google Scholar 

  54. Jiang R (2013) Relationship between delay time and gamma process models. Chem Eng Trans 33:19–24

    Google Scholar 

  55. Jiang R (2012) A timeliness-based optimal inspection interval associated with the delay time model. In: Proceedings of 2012 prognostics and system health management conference (PHM-2012 Beijing), pp 1–5

    Google Scholar 

  56. Jiang X-I, Zhao J-M, Li Z-W (2015) An optimal inspection policy for protection devices of electronic equipment using delay time model. Int J u- e- Serv, Sci Technol 8(8):169–178

    Article  Google Scholar 

  57. Jodejko-Pietruczuk A, Nowakowski T, Werbinska-Wojciechowska S (2013) Time between inspections optimization for technical object with time delay. J Pol Saf Reliab Assoc Proc Summer Saf Reliab Semin 4(1):35–41

    Google Scholar 

  58. Jodejko-Pietruczuk A, Werbinska-Wojciechowska S (2017) Development and sensitivity analysis of a technical object inspection model based on the delay-time concept use. Eksploatacja i Niezawodnosc Maint Reliab 19(3):403–412. http://dx.doi.org/10.17531/ein.2017.3.11

    Article  Google Scholar 

  59. Jodejko-Pietruczuk A, Werbinska-Wojciechowska S (2017) Block inspection policy model with imperfect maintenance for single-unit systems. Proc Eng 187:570–581. https://doi.org/10.1016/j.proeng.2017.04.416

    Article  Google Scholar 

  60. Jodejko-Pietruczuk A, Werbinska-Wojciechowska S (2016) Influence of data uncertainty on the optimum inspection period in a multi-unit system maintained according to the block inspection policy. In: Dependability engineering and complex systems: proceedings of the eleventh international conference on dependability and complex systems DepCoS-RELCOMEX, Springer, Brunów, Poland, June 27–July 1 2016, pp 239–256

    Google Scholar 

  61. Jodejko-Pietruczuk A, Werbinska-Wojciechowska S (2015) Availability model of technical objects—block inspection policy implementation. In: Safety and reliability: methodology and applications: proceedings of the European safety and reliability conference, ESREL 2014, Wroclaw, Poland, CRC Press/Balkema, Leiden, 14–18 Sept 2014, pp 1275–1280

    Chapter  Google Scholar 

  62. Jodejko-Pietruczuk A, Werbinska-Wojciechowska S (2014) Expected maintenance costs model for time-delayed technical systems in various reliability structures. In: Proceedings of probabilistic safety assessment and management, PSAM 12, Honolulu, Hawaii, USA, 22–27 June 2014, pp 1–8. http://psam12.org/proceedings/paper/paper_572_1.pdf

  63. Jodejko-Pietruczuk A, Werbinska-Wojciechowska S (2014) Analysis of maintenance models’ parameters estimation for technical systems with delay time. Eksploatacja i Niezawodnosc Maint Reliab 16(2):288–294

    Google Scholar 

  64. Jodejko-Pietruczuk A, Werbinska-Wojciechowska S (2012) Economical effectiveness of delay time approach using in time-based maintenance modelling. In: Proceedings of 11th international probabilistic safety assessment and management conference & the annual European safety and reliability conference, PSAM 11 & ESREL 2012, Helsinki, Finland, 25–29 June 2012, pp 1–10

    Google Scholar 

  65. Jones B, Jenkinson I, Wang J (2010) The use of fuzzy set modelling for maintenance planning in a manufacturing industry. Proc Inst Mech Eng, Part E: J Process Mech Eng 224:35–48. https://doi.org/10.1243/09544089JPME267

    Article  Google Scholar 

  66. Jones B, Jenkinson I, Wang J (2009) Methodology of using delay-time analysis for a manufacturing industry. Reliab Eng Syst Saf 94:111–124. https://doi.org/10.1016/j.ress.2007.12.005

    Article  Google Scholar 

  67. Jones B, Jenkinson I, Wang J (2008) Application of the delay-time concept in a manufacturing industry. In: Proceedings of the 6th international conference on manufacturing research, Brunel University, London, UK, 9–11 Sept 2008, pp 23–28

    Google Scholar 

  68. Jones B, Jenkinson I, Yang Z, Wang J (2010) The use of Bayesian network modelling for maintenance planning in a manufacturing industry. Reliab Eng Syst Saf 95:267–277. https://doi.org/10.1016/j.ress.2009.10.007

    Article  Google Scholar 

  69. Lee C (1999) Applications of delay time theory to maintenance practice of complex plant. Ph.D. thesis, University of Salford, UK

    Google Scholar 

  70. Leung FKN, Kit-Leung M (1996) Using delay-time analysis to study the maintenance problem of gearboxes. Int J Oper Prod Manag 16(12):98–105

    Article  Google Scholar 

  71. Leung FKN, Ma TW (1997) A study on the inspection frequency of fresh water pumps. Int J Ind Eng 4(1):42–51

    Google Scholar 

  72. Li X, He R, Yan Z, Hu H, Cheng G (2015) A new imperfect maintenance model based on delay-time concepts for single components with multiple failure modes. Int J Syst Assur Eng Manag 6(4):479–486. https://doi.org/10.1007/s13198-014-0306-6

    Article  Google Scholar 

  73. Lipi TF, Lim J-H, Zuo MJ, Wang W (2012) A condition- and age-based replacement model using delay time modelling. Proc Inst Mech Eng, Part O: J Risk Reliab 226(2):221–233. https://doi.org/10.1177/1748006X11421265

    Article  Google Scholar 

  74. Liu X, Wang W, Peng R (2015) An integrated production and delay-time based preventive maintenance planning model for a multi-product production system. Eksploatacja i Niezawodnosc Maint and Reliab 17(2): 215–221

    Article  Google Scholar 

  75. Liu X, Wang W, Peng R, Zhao F (2015) A delay-time-based inspection model for parallel systems. Proc Inst Mech Eng, Part O: J Risk Reliab 229(6):556–567. https://doi.org/10.1177/1748006X15591618

    Article  Google Scholar 

  76. Lopes RS, Cavalcante CAV, Alencar MH (2015) Delay-time inspection model with dimensioning maintenance teams: a study of a company leasing construction equipment. Comput Ind Eng 88:341–349. https://doi.org/10.1016/j.cie.2015.07.009

    Article  Google Scholar 

  77. Lv W, Wang W (2011) Modelling preventive maintenance based on the delay time concept in the context of a case study. Eksploatacja i Niezawodnosc Maint Reliab 3:5–11

    Google Scholar 

  78. Ma X, Wang W, Liu X, Peng R (2017) Optimal inspection and replacement strategy for systems subject to two types of failures with adjustable inspection intervals. J Shanghai Jiao Tong Univ 22(6):752–755

    Article  Google Scholar 

  79. Mahfoud H, El Barkany A, El Biyaali A (2016) Cost effectiveness of healthcare maintenance policy: a new proportional delay time model. Int J Perform Eng 12(5):433–450

    Google Scholar 

  80. Mahfoud H, El Barkany A, El Biyaali A (2016) Reliability assessment of degradable systems under imperfect maintenance and utilisation rate: a case study. Int J Eng Res Afr 26:184–194. https://doi.org/10.4028/www.scientific.net/JERA.26.184

    Article  Google Scholar 

  81. Mahmoudi M, Elwany A, Shanhanagi K, Gholamian MR (2017) A delay time model with multiple defect types and multiple inspection methods. IEEE Trans Reliab 66(4):1073–1084. https://doi.org/10.1109/TR.2017.2754519

    Article  Google Scholar 

  82. Mazzuchi TA, Van Noortwijk JM, Kallen MJ (2007) Maintenance optimization. Technical Report, TR-2007-9

    Google Scholar 

  83. Mcnamara D, Cunningham A, Riahi R, Jenkinson I, Wang J (2015) Application of Monte Carlo techniques with delay-time analysis to assess maintenance and inspection policies for marine systems. Proc IMechE Part E: J Process Mech Eng:1–18. https://doi.org/10.1177/0954408915577336

    Article  Google Scholar 

  84. Nakagawa T, Osaki S (1974) Optimum replacement policies with delay. J Appl Probab 11(1):102–110

    Article  MathSciNet  MATH  Google Scholar 

  85. Nath Das A, Acharya D (2004) Age replacement of components during IFR delay time. IEEE Trans Reliab 53(3):306–312. https://doi.org/10.1109/TR.2004.833422

    Article  Google Scholar 

  86. Nowakowski T, Werbińska-Wojciechowska S (2012) Means of transport maintenance processes performance: decision support system. In: Proceedings of carpathian logistics congress CLC’ 2012, Jesenik, Czech Republic, Tanger, Ostrava, 7–9 Nov 2012, pp 1–6

    Google Scholar 

  87. Nowakowski T, Werbińska-Wojciechowska S (2011) Developments of time dependencies modelling concept. In: Berenguer T, Grall A, Guedes-Soares A (eds) Advances in safety, reliability and risk management—proceedings of European safety and reliability conference ESREL 2011, Taylor and Francis Group, London

    Chapter  Google Scholar 

  88. Okumura S (1997) An inspection policy for deteriorating processes using delay-time concept. Int Trans Oper Res 4(5–6):365–375

    Article  MATH  Google Scholar 

  89. Okumura S, Jardine AKS, Yamashina H (1996) An inspection policy for a deteriorating single-unit system characterized by a delay-time model. Int J Prod Res 34(9):2441–2460

    Article  MATH  Google Scholar 

  90. Pandey D, Cheng T, Van Der Weide JAM (2016) Higher moments and probability distribution of maintenance cost in the delay time model. Proc IMechE Part O: J Risk Reliab 230(4):354–363. https://doi.org/10.1177/1748006X16641767

    Google Scholar 

  91. Pierskalla WP, Voelker JA (1976) A survey of maintenance models: the control and surveillance of deteriorating systems. Naval Res Logist Q 23:353–388

    Article  MathSciNet  MATH  Google Scholar 

  92. Pillay A, Wang J, Wall AD (2001) A maintenance study of fishing vessel equipment using delay-time analysis. J Qual Maint Eng 7(2):118–127

    Article  Google Scholar 

  93. Redmond DF (1997) Delay time analysis in maintenance. Ph.D. thesis, University of Salford, Salford

    Google Scholar 

  94. Scarf PA (1997) On the application of mathematical models in maintenance. Eur J Oper Res 99:493–506

    Article  MATH  Google Scholar 

  95. Scarf PA, Cavalcante CAV (2012) Modelling quality in replacement and inspection maintenance. Int J Prod Econ 135:372–381. https://doi.org/10.1016/j.ijpe.2011.08.011

    Article  Google Scholar 

  96. Scarf PA, Cavalcante CAV (2010) Hybrid block replacement and inspection policies for a multi-component system with heterogeneous component lives. Eur J Oper Res 206:384–394. https://doi.org/10.1016/j.ejor.2010.02.024

    Article  MATH  Google Scholar 

  97. Scarf PA, Cavalcante CAV, Dwight RA, Gordon P (2009) An age-based inspection and replacement policy for heterogeneous components. IEEE Trans Reliab 58(4):641–648. https://doi.org/10.1109/TR.2009.2026796

    Article  Google Scholar 

  98. Scarf PA, Majid HA (2010) Modelling warranty extensions: a case study in the automotive industry. Salford business school working paper series, paper no. 339/10

    Google Scholar 

  99. Senegupta B (1980) Inspection procedures when failure symptoms are delayed. Oper Res 28(3/2):768–776

    Article  MATH  Google Scholar 

  100. Tang T (2012) Failure finding interval optimization for periodically inspected repairable systems. Ph.D. thesis, University of Toronto

    Google Scholar 

  101. Tang Y, Jing JJ, Yang Y, Xie C (2015) Parameter estimation of a delay time model of wearing parts based on objective data. Math Probl Eng, Article ID 419280:1–8

    Google Scholar 

  102. Thomas LC, Gaver DP, Jacobs PA (1991) Inspection models and their application. IMA J Math Appl Bus Ind 3:283–303

    Google Scholar 

  103. Valdez-Flores C, Feldman R (1989) A survey of preventive maintenance models for stochastically deteriorating single-unit systems. Naval Res Logist 36:419–446

    Article  MathSciNet  MATH  Google Scholar 

  104. Van Oosterom CD, Elwany AH, Celebi D, Van Houtum GJ (2014) Optimal policies for a delay time model with postponed replacement. Eur J Oper Res 232:186–197. https://doi.org/10.1016/j.ejor.2013.06.038

    Article  MathSciNet  MATH  Google Scholar 

  105. Wang H, Pham H (1997) A survey of reliability and availability evaluation of complex networks using Monte Carlo techniques. Microelectron Reliab 37(2):187–209. https://doi.org/10.1016/S0026-2714(96)00058-3

    Article  Google Scholar 

  106. Wang H, Wang W, Peng R (2017) A two-phase inspection model for a single component system with three-stage degradation. Reliab Eng Syst Saf 158:31–40. https://doi.org/10.1016/j.ress.2016.10.005

    Article  Google Scholar 

  107. Wang L, Hu H, Wang Y, Wu W, He P (2011) The availability model and parameters estimation method for the delay time model with imperfect maintenance at inspection. Appl Math Model 35:2855–2863. https://doi.org/10.1016/j.apm.2010.11.070

    Article  MathSciNet  MATH  Google Scholar 

  108. Wang W (2012) An overview of the recent advances in delay-time-based maintenance modelling. Reliab Eng Syst Saf 106:165–178. https://doi.org/10.1016/j.ress.2012.04.004

    Article  Google Scholar 

  109. Wang W (2012) A stochastic model for joint spare parts inventory and planned maintenance optimisation. Eur J Oper Res 216:127–139. https://doi.org/10.1016/j.ejor.2011.07.031

    Article  MathSciNet  MATH  Google Scholar 

  110. Wang W (2011) An inspection model based on a three-stage failure process. Reliab Eng Syst Saf 96:838–848. https://doi.org/10.1016/j.ress.2011.03.003

    Article  Google Scholar 

  111. Wang W (2011) A joint spare part and maintenance inspection optimisation model using the Delay-Time concept. Reliab Eng Syst Saf 96:1535–1541. https://doi.org/10.1016/j.ress.2011.07.004

    Article  Google Scholar 

  112. Wang W (2010) Modeling planned maintenance with non-homogeneous defect arrivals and variable probability of defect identification. Eksploatacja i Niezawodnosc- Maint Reliab 2:73–78

    Google Scholar 

  113. Wang W (2010) A model for maintenance service contract design, negotiation and optimization. Eur J Oper Res 201:239–246. https://doi.org/10.1016/j.ejor.2009.02.018

    Article  MATH  Google Scholar 

  114. Wang W (2009) Delay time modelling for optimized inspection intervals of production plant. In: Ben-Daya M, Duffuaa SO, Raouf A, Knezevic J, Ait-Kadi D (eds) Handbook of maintenance management and engineering, Springer

    Google Scholar 

  115. Wang W (2009) An inspection model for a process with two types of inspections and repairs. Reliab Eng Syst Saf 94(2):526–533. https://doi.org/10.1016/j.ress.2008.06.010

    Article  Google Scholar 

  116. Wang W (2008) Delay time modelling. In: Kobbacy AH, Prabhakar Murthy DN (eds) Complex system maintenance handbook. Springer, London

    Google Scholar 

  117. Wang W (2002) A delay time based approach for risk analysis of maintenance activities. Saf Reliab 23(1):103–113. https://doi.org/10.1080/09617353.2002.11690753

    Article  MathSciNet  Google Scholar 

  118. Wang W (2000) A model of multiple nested inspections at different intervals. Comput Oper Res 27:539–558. https://doi.org/10.1016/S0305-0548(99)00046-5

    Article  MATH  Google Scholar 

  119. Wang W (1997) Subjective estimation of the delay time distribution in maintenance modelling. Eur J Oper Res 99:516–529. https://doi.org/10.1016/S0377-2217(96)00318-9

    Article  MATH  Google Scholar 

  120. Wang W (1992) Modelling condition monitoring inspection using the delay-time concept. Ph.D. thesis, Salford, University of Salford, Salford

    Google Scholar 

  121. Wang W, Banjevic D (2012) Ergodicity of forward times of the renewal process in a block-based inspection model using the delay time concept. Reliab Eng Syst Saf 100:1–7. https://doi.org/10.1016/j.ress.2011.12.011

    Article  Google Scholar 

  122. Wang W, Banjevic D, Pecht M (2010) A multi-component and multi-failure mode inspection model based on the delay-time concept. Reliab Eng Syst Saf 95:912–920. https://doi.org/10.1016/j.ress.2010.04.004

    Article  Google Scholar 

  123. Wang W, Carr J, Chow TWS (2012) A two-level inspection model with technological insertions. IEEE Trans Reliab 61(2):479–490

    Article  Google Scholar 

  124. Wang W, Christer AH (2003) Solution algorithms for a nonhomogeneous multi-component inspection model. Comput Oper Res 30:19–34. https://doi.org/10.1016/S0305-0548(01)00074-0

    Article  MathSciNet  MATH  Google Scholar 

  125. Wang W, Jia X (2007) An empirical Bayesian based approach to delay time inspection model parameters estimation using both subjective and objective data. Qual Reliab Eng Int 23:95–105. https://doi.org/10.1002/qre.815

    Article  Google Scholar 

  126. Wang W, Liu X, Peng R, Guo L (2013) A delay-time-based inspection model for a two-component parallel system. In: Proceedings of 2013 international conference on quality, reliability, risk, maintenance, and safety engineering (QR2MSE), Chengdu, China, 15–18 July 2013

    Google Scholar 

  127. Wang W, Majid HBA (2000) Reliability data analysis and modelling of offshore oil platform plant. J Qual Maint Eng 6(4):287–295. https://doi.org/10.1108/13552510010346824

    Article  Google Scholar 

  128. Wang W, Syntetos AA (2011) Spare parts demand: linking forecasting to equipment maintenance. Transp Res Part E 47:1194–1209. https://doi.org/10.1016/j.tre.2011.04.008

    Article  Google Scholar 

  129. Wen-Yuan LV, Wang W (2006) Modelling preventive maintenance of production plant given estimated PM data and actual failure times. In: Proceedings of international conference on management science and engineering, 2006 ICMSE ‘06, IEEE, pp 387–390. https://doi.org/10.1109/icmse.2006.313857

  130. Werbinska-Wojciechowska S, Zajac P (2015) Use of delay-time concept in modelling process of technical and logistics systems maintenance performance. Case study. Eksploatacja i Niezawodnosc Maint Reliab 17(2):174–185

    Article  Google Scholar 

  131. Werbinska-Wojciechowska S (2013) Time resource problem in logistics systems dependability modelling. Eksploatacja i Niezawodnosc Maint Reliab 15(4):427–433

    Google Scholar 

  132. Williams GB, Hirani RS (1997) A delay time multi-level on-condition preventive maintenance inspection model based on constant base interval risk—when inspection detects pending failure. Int J Mach Tools Manuf 37(6):823–836

    Article  Google Scholar 

  133. Yamashina H, Otani S (2001) Cost-optimized maintenance of the elevator—single unit case. J Qual Maint Eng 7(1):49–70

    Article  Google Scholar 

  134. Yang L, Ma X, Zhai Q, Zhao Y (2016) A delay time model for a mission-based system subject to periodic and random inspection and postponed replacement. Reliab Eng Syst Saf 150:96–104. https://doi.org/10.1016/j.ress.2016.01.016

    Article  Google Scholar 

  135. Yang R, Yan Z, Kang J (2015) An inspection maintenance model based on a three-stage failure process with imperfect maintenance via Monte Carlo simulation. Int J Syst Assur Eng Manag 6(3):231–237. https://doi.org/10.1007/s13198-014-0292-8

    Article  Google Scholar 

  136. Yang R, Zhao F, Kang J, Zhang X (2014) An inspection optimization model based on a three-stage failure process. Int J Perform Eng 10(7):775–779

    Google Scholar 

  137. Zhang X, Chen M, Zhou D (2012) Inspection models considering the overlapping of inspection span and failure downtime. Chin J Chem Eng 20(6):1167–1173

    Article  Google Scholar 

  138. Zhao F, Peng R, Wang W (2012) An inspection and replacement model based on a three-stage failure process. In: IEEE conference on prognostics and system health management (PHM), Beijing, China, 23–25 May 2012, pp 1–7, https://doi.org/10.1109/phm.2012.6228928

  139. Zhao F, Wang W, Peng R (2015) Delay-time-based preventive maintenance modelling for a production plant: a case study in a steel mill. J Oper Res Soc 66(12):1–10. https://doi.org/10.1057/jors.2015.20

    Article  Google Scholar 

  140. Zhu L, Zuo H-F (2012) The delay-time maintenance optimization model with two failure modes. Adv Mater Res 452–453:190–194. https://doi.org/10.4028/www.scientific.net/AMR.452-453.190

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylwia Werbińska-Wojciechowska .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Werbińska-Wojciechowska, S. (2019). Delay-Time Maintenance Models for Technical Systems. In: Technical System Maintenance. Springer Series in Reliability Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-10788-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10788-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10787-1

  • Online ISBN: 978-3-030-10788-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics