Skip to main content

Scheimpflug Camera-Based Systems

  • Chapter
  • First Online:
Corneal Topography

Abstract

The Scheimpflug principles enable the capture of focused images of objects that are not parallel to the camera and lens, such as a curved cornea. This is achieved by careful movement of the image and lens planes. In the Pentacam, this is achieved by rotation around a central axis and capture of 50 meridional pictures.

Scheimpflug photography images the anterior segment and uses ray-tracing algorithms to provide data on the anterior and posterior corneal surfaces, corneal pachymetry and anterior chamber depth. The effects of misalignment and eye movement can be reduced by using a dual Scheimpflug system with two cameras. The accuracy of measurements can be improved by incorporating Placido imaging into the device.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Scheimpflug T. Improved method and apparatus for the systematic alteration or distortion of plane pictures and images by means of lenses and mirrors for photography and for other purposes. GB Patent No. 1196. Filed 16 January 1904, and issued 12 May 1904.

    Google Scholar 

  2. Dubbellman M, Van Der Heijde RGL. The shape of the aging human lens: curvature, equivalent refractive index and the lens paradoxon. Vis Res. 2001;41:1867–88.

    Article  Google Scholar 

  3. Dubbellman M, Weeber HA, Van Der Heijde RGL, Volker-Dieben HJ. Radius and aspericity of the posterior corneal surface determined by corrected Scheimpflug photography. Acta Ophthalmol Scand. 2002;80:379–83.

    Article  Google Scholar 

  4. Gilani F, Cortese M, Ambrósio RR Jr, et al. Comprehensive anterior segment normal values generated by rotating Scheimpflug tomography. J Cataract Refract Surg. 2013;39(11):1707–12.

    Article  Google Scholar 

  5. Aramberri J, Araiz L. Garcia A. et al. Dual versus single Scheimpflug camera for anterior segment analysis: precision and agreement. J Cataract Refract Surg 2012;38(11):1934–1949.

    Article  Google Scholar 

  6. Mandell RB, St. Helen R. Stability of the corneal contour. Am J Optom. 1968;45(12):797–806.

    Article  CAS  Google Scholar 

  7. Roberts C. . The resolution necessary for surface height measurements of the cornea. Optical Society of America Annual Meeting, October 2–7 1994.

    Google Scholar 

  8. Ciolino JB, Belin MW. Changes in the posterior cornea after LASIK and PRK. J Caract Refract Surg. 2006;32:1426–31.

    Article  Google Scholar 

  9. Buehl W, Sojanac D, Sacu S, et al. Comparison of three methods of measuring corneal thickness and anterior chamber depth. Am J Ophthalmol. 2006;141:7–12.

    Article  Google Scholar 

  10. Lackner B, Schmidinger C, Pieh S, et al. Repeatability and reproducibility of central corneal thickness measurement with Pentacam, Orbscan and ultrasound. Optom Vis Sci. 2005;82:892–9.

    Article  Google Scholar 

  11. Lackner B, Schmidinger C, Skorpic C. Validity and repeatability of anterior chamber depth measurements with Pentacam and Orbscan. Optom Vis Sci. 2005;82:858–61.

    Article  Google Scholar 

  12. O’Donnell C, Maldonado-Codina C. Agreement and repeatability of central thickness measurement in normal corneas using ultrasound pachymetry and the Oculus Pentacam. Cornea. 2005;24:920–4.

    Article  Google Scholar 

  13. Ucakhan OO, Ozkan M, Kanpolat A. Corneal thickness measurements in normal and keratoconic eyes: Pentacam comprehensive eye scanner versus non-contact specular microscopy and ultrasound pachymetry. J Cataract Refract Surg. 2006;32:970–7.

    Article  Google Scholar 

  14. Ciolino JB, Khachikian SS, Cortese MJ, Belin MW. Long-term stability of the posterior cornea after LASIK. J Cataract Refract Surg. 2007;33:1366–70.

    Article  Google Scholar 

  15. Salvetat ML, Zeppieri M, Tosoni C, et al. Corneal deformation parameters provided by the Corvis-ST Pachy-tonometer in healthy subjects and glaucoma patients. J Glaucoma. 2015;24(8):568–74.

    Article  Google Scholar 

  16. Roberts CJ. Importance of accurately assessing biomechanics of the cornea. Curr Opin Ophthalmol. 2016;27(4):285–91.

    Article  Google Scholar 

  17. Sel S, Stange J, Kaiser D, et al. Repeatability and agreement of Scheimpflug-based and swept-source optical biometry measurements. Cont Lens Anterior Eye. 2017;40(5):318–22.

    Article  Google Scholar 

  18. Shajari M, Cremonese C, Petermann K, et al. Comparison of axial length, corneal curvature, and anterior chamber depth measurements of 2 recently introduced devices to a known biometer. Am J Ophthalmol. 2017;178:58–64.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Corbett, M., Maycock, N., Rosen, E., O’Brart, D. (2019). Scheimpflug Camera-Based Systems. In: Corneal Topography. Springer, Cham. https://doi.org/10.1007/978-3-030-10696-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10696-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10694-2

  • Online ISBN: 978-3-030-10696-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics