Skip to main content

Corneal Ectasia

  • Chapter
  • First Online:
Corneal Topography

Abstract

In primary corneal ectasias, noninflammatory stromal thinning causes the cornea to progressively protrude forwards. Secondary ectasia occurs as a result of thinning due to corneal surgery or inflammatory stromal melt. In both types, in the early stages, the classical clinical signs may be absent, so the diagnosis relies upon topographic findings alone.

In keratoconus the cornea has an exaggerated prolate shape with paracentral corneal steepening, which most commonly occurs inferiorly, with corneal flattening in the opposite hemisphere. This causes corneal irregularity which can only be improved by glasses in the earliest stages. Keratoconus can be classified according to the severity, location and shape of the cone.

In pellucid marginal degeneration, the thinning is further inferiorly, creating a “droopy bow tie” area of corneal steepening, associated with high orders of regular astigmatism. With further progression, the “bows” of the “tie” may meet in the inferior periphery, producing a pattern resembling a more inferior keratoconus. Keratoglobus has a more even thinning affecting the whole cornea, which expands more symmetrically, with relatively little effect on the refraction.

Topographic indices have been developed to detect very early stages of ectasia and quantify progression. These include the asymmetry and regularity indices, inferior-superior value, difference in central power, keratoconus predictability index, enhanced ectasia display and, in certain devices, neural networks. The differential diagnosis includes artefact, contact lens-induced corneal warpage and various types of corneal disease and surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

*References Particularly Worth Reading

  1. Rabinowitz YS, Maumenee IH, Lundergan MK. Molecular genetic analysis in autosomal dominant keratoconus. Cornea. 1992;11:302–8.

    Article  CAS  Google Scholar 

  2. Rabinowitz YS, Garbus J, McDonnell PJ. Computer-assisted corneal topography in family members of patients with keratoconus. Arch Ophthalmol. 1990;108:365–71.

    Article  CAS  Google Scholar 

  3. Gonzalez V, McDonnell PJ. Computer-assisted corneal topography in parents of patients with keratoconus. Arch Ophthalmol. 1992;110:1412–4.

    Article  Google Scholar 

  4. *Rabinowitz YS, Nesburn AB, McDonnell PJ. Videokeratography of the fellow eye in unilateral keratoconus. Ophthalmology. 1993;100:181–186.

    Article  CAS  Google Scholar 

  5. Behrens-Baumann W. Detection of keratoconus before refractive surgery [letter]. Ophthalmology. 1994;101:794–5.

    Article  CAS  Google Scholar 

  6. Hustead JD. Detection of keratoconus before keratorefractive surgery [letter]. Ophthalmology. 1993;100:975.

    Article  CAS  Google Scholar 

  7. *Holland DR, Maeda N, Hannush SB, Riveroll LH, Green MT, Klyce SD, Wilson SE. Unilateral keratoconus. Ophthalmology. 1997;104:1409–1413.

    Article  CAS  Google Scholar 

  8. Eran P, Almogit A, David Z, et al. The D144E substitution in the VSX1 gene: a non-pathogenic variant or a disease causing mutation? Ophthalmic Genet. 2008;29:53–9.

    Article  CAS  Google Scholar 

  9. Sherwin T, Brookes NH, Loh IP, et al. Cellular incursion into Bowman’s membrane in the peripheral cone of the keratoconic cornea. Exp Eye Res. 2002;74(4):473–82.

    Article  CAS  Google Scholar 

  10. Mas-Tur V, MacGregor C, Jayaswal R, et al. A review of keratoconus: diagnosis, pathophysiology and genetics. Surv Ophthalmol. 2017;62(6):770–83.

    Article  Google Scholar 

  11. Tuft SJ, Moodaley LC, Gregory WM, Davison CR, Buckley RJ. Prognostic factors for the progression of keratoconus. Ophthalmology. 1994;101:439–47.

    Article  CAS  Google Scholar 

  12. Karolak JA, Kulinska K, Nowak DM, et al. Sequence variants in COL4A1 and COL4A2 genes in Ecuadorian families with keratoconus. Mol Vis. 2011;17:827–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Mintz-Hittner HA, Semina EV, Frishman LJ, et al. VSX1 (RINX) mutation with craniofacial anomalies, empty sella, corneal endothelial changes and abnormal retinal and auditory bipolar cells. Ophthalmology. 2004;111:828–36.

    Article  Google Scholar 

  14. Godefrooij DA, Ardine de Wit G, Uiterwaal CS, et al. Age-specific incidence and prevalence of keratoconus: a nationwide registration study. Am J Ophthalmol. 2017;175:169–72.

    Article  Google Scholar 

  15. *Rabinowitz YS, McDonnell PJ. Computer-assisted corneal topography in keratoconus. Refract Corneal Surg. 1989;5:400–408.

    CAS  Google Scholar 

  16. *Wilson SE, Lin DTC, Klyce SD. Corneal topography of keratoconus. Cornea. 1991;10:2–8.

    Article  CAS  Google Scholar 

  17. de Cunha DA, Woodward EG. Measurement of corneal topography in keratoconus. Ophthal Physiol Opt. 1993;13:377–82.

    Article  Google Scholar 

  18. Corbett MC, O’Brart DPS, Stultiens BAT, Jongsma FHM, Marshall J. Corneal topography using a new moiré image-based system. Eur J Implant Ref Surg. 1995;7:353–70.

    Article  Google Scholar 

  19. Mok JW, Baek SJ, Joo CK, et al. VSX1 gene variants are associated with keratoconus in unrelated Korean patients. J Hum Genet. 2008;53:842–9.

    Article  CAS  Google Scholar 

  20. Reinstein DZ, Archer TJ, Gobbe M. Corneal epithelial thickness profile in the diagnosis of keratoconus. J Refract Surg. 2009;25(7):604–10.

    Article  Google Scholar 

  21. Maguire LJ, Bourne MW. Corneal topography of early keratoconus (reply). Am J Ophthalmol. 1989;108:747–8.

    Article  Google Scholar 

  22. Belin MW, Khachikian SS. An introduction to understanding elevation based topography: how elevation data are displayed – a review. Clin Exp Ophthalmol. 2009;37:14–29.

    Article  Google Scholar 

  23. Li X, Bykhovskaya Y, Canedo AL, et al. Genetic association of COL5A1 variants in keratoconus patients suggests a complex connection between corneal thinning and keratoconus. IOVS. 2013;54(4):2696–704.

    CAS  Google Scholar 

  24. Sharma A, Tovey JC, Ghosh A, et al. AAV serotype influences gene transfer in corneal stroma in vivo. Exp Eye Res. 2010;3:440–8.

    Article  Google Scholar 

  25. Manuolio TA. Genome-wide association studies and assessment of the risk of disease. N Engl J Med. 2010;2:166–76.

    Article  Google Scholar 

  26. *Madea N, Klyce SD, Smolek MK, Thompson HW. Automated keratoconus screening with corneal topography analysis. Invest Ophthalmol Vis Sci. 1994;35:2749–2757.

    Google Scholar 

  27. Smolek MK, Klyce SD, Maeda N. Keratoconus and contact lens-induced corneal warpage analysis using the keratomorphic diagram. Invest Ophthalmol Vis Sci. 1994;35:4192–203.

    CAS  PubMed  Google Scholar 

  28. Maeda N, Klyce SD, Smolek MK. Comparison of methods for detecting keratoconus using videokeratoscopy. Arch Ophthalmol. 1995;113:870–4.

    Article  CAS  Google Scholar 

  29. Goren MB. Comparison of methods for detecting keratoconus using videokeratography [letter]. Arch Ophthalmol. 1996;114:631.

    Article  CAS  Google Scholar 

  30. Klyce SD, Smolek MK, Maeda N. Comparison of methods for detecting keratoconus using videokeratography [reply]. Arch Ophthalmol. 1996;114:631–2.

    Article  Google Scholar 

  31. *Smolek MK, Klyce SD. Current keratoconus detection methods compared with a neural network approach. Invest Ophthalmol Vis Sci. 1997;38:2290–2299.

    CAS  PubMed  Google Scholar 

  32. Ambrosio R Jr, Alonson RS, Luz A, et al. Corneal thickness spatial profile and corneal volume distribution: tomographic indices to detect keratoconus. J Cat Refract Surg. 2006;32(11):1851–9.

    Article  Google Scholar 

  33. Abad JC, Rubinfeld RS, Del Valle M, et al. Vertical D: a novel topographic pattern in some keratoconus suspects. Ophthalmology. 2007;114(5):1020–6.

    Article  Google Scholar 

  34. Khachikian SS, Belin MW. Posterior elevation in keratoconus. Ophthalmology. 2009;116(4):816e1.

    Article  Google Scholar 

  35. Arce C. Qualitative and quantitative analysis of aspheric symmetry and asymmetry on corneal surfaces. ASCRS (American Society of Cataract and Refractive Surgeons) Conference: Boston; 2010.

    Google Scholar 

  36. Smadja D, Touboul D, Cohen A, et al. Detection of subclinical keratoconus using an automated decision tree classification. Am J Ophthalmol. 2013;156(2):237–246e1.

    Article  Google Scholar 

  37. Maeda N, Klyce SD, Smolek MK, et al. Automated keratoconus screening with corneal topography analysis. IOVS. 1994;35(6):2749–57.

    CAS  Google Scholar 

  38. Dingeldein SA, Klyce SD, Wilson SE. Quantitative descriptors of corneal shape derived from the computer-assisted analysis of photokeratographs. Refract Corneal Surg. 1989;5:372–8.

    Article  CAS  Google Scholar 

  39. Wilson SE, Klyce SD. Quantitative descriptors of corneal topography. A clinical study. Arch Ophthalmol. 1991;109:349–53.

    Article  CAS  Google Scholar 

  40. Maeda M, Klyce SD, Smolek MK. Neural network classification of corneal topography. Invest Ophthalmol Vis Sci. 1995;36:1327–35.

    CAS  PubMed  Google Scholar 

  41. Amsler M. Le keratocone fruste au javal. Ophthalmologica. 1938;96:77–83.

    Article  Google Scholar 

  42. Amsler M. Keratocone classique et keratocone fruste, arguments unitaire. Ophthalmologica. 1946;111:96–101.

    Article  CAS  Google Scholar 

  43. Belin MW, Duncan J, Ambrosio R Jr, et al. A new tomographic method of grading keratoconus: the ABCD Grading system. Int J Kerat Ect Cor Dis. 2015;4(3):85–93.

    Google Scholar 

  44. *Wilson SE, Klyce SD. Screening for corneal topographic abnormalities before refractive surgery. Ophthalmology. 1994;101:147–152.

    Article  CAS  Google Scholar 

  45. Nesburn AB, Bahri S, Salz J, Rabinowitz YS, Maguen E, Hofbauer J, Belin M, Macy JI. Keratoconus detected by videokeratography in candidates for photorefractive keratectomy. J Refract Surg. 1995;11:194–201.

    CAS  PubMed  Google Scholar 

  46. Bowman CB, Thompson KP, Stulting RD. Refractive keratotomy in keratoconus suspects. J Refract Surg. 1995;11:202–6.

    CAS  PubMed  Google Scholar 

  47. Doyle SJ, Hynes E, Naroo S, Shah S. PRK in patients with a keratoconic topography picture. The concept of a physiological ‘displaced apex syndrome’. Br J Ophthalmol. 1996;80:25–8.

    Article  CAS  Google Scholar 

  48. Colin J, Cochener B, Bobo C, Malet F, Gallinaro C, Le Floch G. Myopic photorefractive keratectomy in eyes with atypical inferior corneal steepening. J Cat Refract Surg. 1996;22:1423–6.

    Article  CAS  Google Scholar 

  49. O’Brart DPS, Saunders DC, Corbett MC, Rosen ES. The corneal topography of keratoconus. Eur J Implant Ref Surg. 1995;7(1):20–30.

    Article  Google Scholar 

  50. Eiferman RA, Lane L, Law M, Fields Y. Superior keratoconus [letter]. Refract Corneal Surg. 1993;9:394–5.

    CAS  PubMed  Google Scholar 

  51. *McMahon TT, Robin JB, Scarpulla KM, Putz JL. The spectrum of corneal topography found in keratoconus. CLAO J. 1991;17:198–204.

    CAS  PubMed  Google Scholar 

  52. *Hubbe RE, Foulks GN. The effect of poor fixation on computer-assisted topographic corneal analysis. Ophthalmology. 1994;101:1745–1748.

    Article  CAS  Google Scholar 

  53. Silverman CM. Misalignment of videokeratoscope produces pseudo-keratoconus suspect. J Cat Refract Surg. 1994;10:468.

    CAS  Google Scholar 

  54. *Karabatsas CH, Cook SD. Topographic analysis in pellucid marginal degeneration and keratoglobus. Eye. 1996;10:451–455.

    Article  Google Scholar 

  55. *Rabinowitz YS, Garbus JJ, Garbus C, McDonnell PJ. Contact lens selection for keratoconus using a computer assisted videokeratoscope. CLAO J. 1991;17:88–93.

    CAS  PubMed  Google Scholar 

  56. Khong AM, Mannis MJ, Plotnik RD, Johnson CA. Computerised topographic analysis of the healing graft after penetrating keratoplasty for keratoconus. Am J Ophthalmol. 1993;115:209–15.

    Article  CAS  Google Scholar 

  57. Kremer I, Eagle RC, Rapuano CJ, Laibson PR. Histological evidence of recurrent keratoconus seven years after keratoplasty. Am J Ophthalmol. 1995;199:511–2.

    Article  Google Scholar 

  58. Bechrakis N, Blom ML, Stark WJ, Green WR. Recurrent keratoconus. Cornea. 1994;13:73–7.

    Article  CAS  Google Scholar 

  59. Serdarevic ON, Renard GJ, Pouliquen Y. Penetrating keratoplasty for keratoconus: role of videokeratoscopy and trephine sizing. J Cataract Refract Surg. 1996;22:1165–74.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Corbett, M., Maycock, N., Rosen, E., O’Brart, D. (2019). Corneal Ectasia. In: Corneal Topography. Springer, Cham. https://doi.org/10.1007/978-3-030-10696-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10696-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10694-2

  • Online ISBN: 978-3-030-10696-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics