Skip to main content

Impact of the Trap Attributes on the Gate Leakage Mechanisms in a 2D MS-EMC Nanodevice Simulator

  • Conference paper
  • First Online:
Numerical Methods and Applications (NMA 2018)

Abstract

From a modeling point of view, the inclusion of adequate physical phenomena is mandatory when analyzing the behavior of new transistor architectures. In particular, the high electric field across the ultra-thin insulator in aggressively scaled transistors leads to the possibility for the charge carriers in the channel to tunnel through the gate oxide via various gate leakage mechanisms (GLMs). In this work, we study the impact of trap number on gate leakage using the GLM model, which is included in a Multi-Subband Ensemble Monte Carlo (MS-EMC) simulator for Fully-Depleted Silicon-On-Insulator (FDSOI) field effect transistors (FETs). The GLM code described herein considers both direct and trap-assisted tunneling. This work shows that trap attributes and dynamics can modify the device electrostatic characteristics and even play a significant role in determining the extent of GLMs.

The research leading to these results has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 688101 SUPERAID7.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roy, K., Mukhopadhyay, S., Mahmoodi-Meimand, H.: Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits. Proc. IEEE 91, 305–327 (2003)

    Article  Google Scholar 

  2. Taur, Y., Ning, T.H.: Fundamentals of Modern VLSI Devices. Cambridge University Press, New York (2009)

    Book  Google Scholar 

  3. Medina-Bailon, C., et al.: Assessment of gate leakage mechanism utilizing multi-subband ensemble Monte Carlo. In: 2017 Joint International EUROSOI and International Conference on Ultimate Integration on Silicon (EUROSOI-ULIS) (2017)

    Google Scholar 

  4. Sampedro, C., Gámiz, F., Godoy, A., Valín, R., García-Loureiro, A., Ruiz, F.G.: Multi-Subband Monte Carlo study of device orientation effects in ultra-short channel DGSOI. Solid State Electron. 54(2), 131–136 (2010)

    Article  Google Scholar 

  5. Sampedro, C., Gámiz, F., Godoy, A.: On the extension of ET-FDSOI roadmap for 22 nm node and beyond. Solid State Electron. 90, 23–27 (2013)

    Article  Google Scholar 

  6. Medina-Bailon, C., Padilla, J.L., Sampedro, C., Godoy, A., Donetti, L., Gamiz, F.: Source-to-drain tunneling analysis in FDSOI, DGSOI, and FinFET devices by means of multisubband ensemble Monte Carlo. IEEE Trans. Electron Devices (99), 1–7 (2018)

    Google Scholar 

  7. Medina-Bailon, C., Padilla, J., Sampedro, C., Alper, C., Gámiz, F., Ionescu, A.: Implementation of band-to-band tunneling phenomena in a multi-subband ensemble Monte Carlo simulator: application to silicon TFETs. IEEE Trans. Electron Dev. 64(8), 3084–3091 (2017)

    Article  Google Scholar 

  8. Vandelli, L., et al.: A physical model of the temperature dependence of the current through SiO 2 / HfO 2 stacks. IEEE Trans. Electron Dev. 58(9), 2878–2887 (2011)

    Article  Google Scholar 

  9. Sadi, T., Mehonic, A., Montesi, L., Buckwell, M., Kenyon, A., Asenov, A.: Investigation of resistance switching in SiOx RRAM cells using a 3D multi-scale kinetic Monte Carlo simulator. J. Phys. Condens. Matter 30(8), 084005 (2018)

    Article  Google Scholar 

  10. Jegert, G.C.: Modeling of leakage currents in high-\(\kappa \) dielectrics, Ph.D. dissertation, Technische Universit\(\ddot{a}\)t M\(\ddot{u}\)nchen, M\(\ddot{u}\)nchen, March 2012

    Google Scholar 

  11. Sadi, T., et al.: Advanced physical modeling of SiOx resistive random access memories. In: 2016 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), pp. 149–152 (2016)

    Google Scholar 

  12. Griffiths, D.J.: The WKB approximation. In: Introduction to Quantum Mechanics, chap. 8, pp. 274–297. Prentice Hall, New Jersey (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Medina-Bailon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Medina-Bailon, C. et al. (2019). Impact of the Trap Attributes on the Gate Leakage Mechanisms in a 2D MS-EMC Nanodevice Simulator. In: Nikolov, G., Kolkovska, N., Georgiev, K. (eds) Numerical Methods and Applications. NMA 2018. Lecture Notes in Computer Science(), vol 11189. Springer, Cham. https://doi.org/10.1007/978-3-030-10692-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10692-8_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10691-1

  • Online ISBN: 978-3-030-10692-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics