Skip to main content

Monte Carlo Approach for Modeling and Optimization of One-Dimensional Bimetallic Nanostructures

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11189))

Abstract

In this paper we present a method for optimizing of metal nanoparticle structures. The core of the method is a lattice Monte-Carlo method with different lattices combined with an approach from molecular dynamics. Interaction between atoms is calculated using multi-particle tight-binding potential of Gupta – Cleri&Rosato. The method allows solving of problems with periodic boundary conditions. It can be used for modeling of one-dimensional (nanowire, tube) and two-dimensional (nano-film) structures. If periodic boundary conditions are not given, we assume finite dimensions of the model lattice. In addition, automatic relaxation of the crystal lattice can be performed in order to minimize further the potential energy of the system. Both stretching and compressing of the lattice is permitted. A computer implementation of the method is developed. It allows easy and efficient operation. It uses the commonly accepted XYZ format for describing metal nanoparticles. The parameters of the method, such as number and type of metal atoms, temperature of the system, etc. are entered on a separate command line. The method is tested extensively on a large set of examples.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Sannicolo, T., Lagrange, M., Cabos, A., et al.: Metallic nanowire-based transparent electrodes for next generation flexible devices: a review. Small 12(44), 6052–6075 (2016)

    Article  Google Scholar 

  2. Luo, M., Liu, Y., Huang, W., Qiao, W.: Towards flexible transparent electrodes based on carbon and metallic materials. Micromachines 8(1), 12 (2017)

    Article  Google Scholar 

  3. Li, H., Biser, J.M., Perkins, J.T., Dutta, S., et al.: Thermal stability of Cu nanowires on a sapphire substrate. J. Appl. Phys. 103(2), 024315-1–024315-9 (2008)

    Google Scholar 

  4. Langley, D.P., Lagrange, M., Giusti, G., Jiménez, C., et al.: Metallic nanowire networks: effects of thermal annealing on electrical resistance. Nanoscale 6(22), 13535–13543 (2014)

    Article  Google Scholar 

  5. Karim, S., Toimil-Molares, M.E., Balogh, A.G., et al.: Morphological evolution of Au nanowires controlled by Rayleigh instability. Nanotechnology 17(24), 5954–5959 (2006)

    Article  Google Scholar 

  6. Rauber, M., Muench, F., Toimil-Molares, M.E., Ensinger, W.: Thermal stability of electrodeposited platinum nanowires and morphological transformations at elevated temperatures. Nanotechnology 23(47), 475710 (2012)

    Article  Google Scholar 

  7. Granberg, F., Parviainen, S., Djurabekova, F., Nordlund, K.: Investigation of the thermal stability of Cu nanowires using atomistic simulations. J. Appl. Phys. 115(21), 213518-1–213518-5 (2014)

    Article  Google Scholar 

  8. Calvo, F.: Solid-solution precursor to melting in onion-ring Pd-Pt nanoclusters: a case of second-order-like phase change? Faraday Discuss. 138, 75–88 (2008)

    Article  Google Scholar 

  9. Davis, J., Johnston, R., Rubinovich, L., Polak, M.: Comparative modelling of chemical ordering in palladium-iridium nanoalloys. J. Chem. Phys. 141, 224307 (2014)

    Article  Google Scholar 

  10. Ferrando, R., Fortunelli, A., Johnston, R.: Searching for the optimum structures of alloy nanoclusters. Phys. Chem. Chem. Phys. 10, 640–649 (2008)

    Article  Google Scholar 

  11. Panizon, E., Olmos-Asar, J., Peressi, M., Ferrando, R.: The study of the structure and thermodynamics of CuNi nanoalloys using a new DFT-fitted atomistic potential. Phys. Chem. Chem. Phys. 17, 28068–28075 (2015)

    Article  Google Scholar 

  12. Parsina, I., DiPaola, C., Baletto, F.: A novel structural motif for free CoPt nanoalloys. Nanoscale 4, 1160–1166 (2012)

    Article  Google Scholar 

  13. Paz-Borbón, L., Mortimer-Jones, Th, Johnston, R., Posada-Amarillas, A., et al.: Structures and energetics of 98 atom Pd–Pt nanoalloys: potential stability of the Leary tetrahedron for bimetallic nanoparticles. Phys. Chem. Chem. Phys. 9, 5202–5208 (2007)

    Article  Google Scholar 

  14. Schebarchov, D., Wales, D.: A new paradigm for structure prediction in multicomponent systems. J. Chem. Phys. 139(22), 221101 (2013). https://doi.org/10.1063/1.4843956

    Article  Google Scholar 

  15. Schebarchov, D., Wales, D.: Quasi-combinatorial energy landscapes for nanoalloy structure optimization. Phys. Chem. Chem. Phys. 17, 28331–28338 (2015)

    Article  Google Scholar 

  16. Shayeghi, A., Götz, D., Davis, J.B.A., Schäfer, R., Johnston, R.L.: Pool-BCGA: a parallelised generation-free genetic algorithm for the ab initio global optimisation of nanoalloy clusters. Phys. Chem. Chem. Phys. 17, 2104 (2015)

    Article  Google Scholar 

  17. Toai, T.J., Rossi, G., Ferrando, R.: Global optimisation and growth simulation of AuCu clusters. Faraday Discuss. 138, 49–58 (2008). https://doi.org/10.1039/b707813g

    Article  Google Scholar 

  18. Bilalbegović, G.: Structures and melting in infinite gold nanowires. Solid State Commun. 115, 73–76 (2000)

    Article  Google Scholar 

  19. Liu, W., Chen, P., Qiu, R., Khan, M., et al.: A molecular dynamics simulation study of irradiation induced defects in gold nanowire. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 405, 22–30 (2017)

    Article  Google Scholar 

  20. Diao, J., Gall, K., Dunn, M.L., Zimmerman, J.A.: Atomistic simulations of the yielding of gold nanowires. Acta Mater. 54(3), 643–653 (2006)

    Article  Google Scholar 

  21. Zepeda-Ruiz, L.A., Sadigh, B., Biener, J., Hodge, A.M., et al.: Mechanical response of freestanding Au nanopillars under compression. Appl. Phys. Lett. 91(10), 101907-1–101907-3 (2007)

    Article  Google Scholar 

  22. Olsson, P.A.T., Park, H.S.: Atomistic study of the buckling of gold nanowires. Acta Mater. 59(10), 3883–3894 (2011)

    Article  Google Scholar 

  23. He, X., Cheng, F., Chen, Z.-X.: The lattice kinetic Monte Carlo simulation of atomic diffusion and structural transformation for gold. Sci. Rep. 6(1), 33128 (2016)

    Article  Google Scholar 

  24. Baibuz, E., Vigonski, S., Lahtinena, J., Zhao, J., Jansson, V., Zadin, V., Djurabekova, F.: Migration barriers for surface diffusion on a rigid lattice: challenges and solutions. Comput. Mater. Sci. 146, 287–302 (2018). https://doi.org/10.1016/j.commatsci.2017.12.054

    Article  Google Scholar 

  25. Cleri, F., Rosato, V.: Tight-binding potentials for transition metals and alloys. Phys. Rev. B 48, 22–33 (1993)

    Article  Google Scholar 

  26. Sutton, A., Chen, J.: Long-range Finnis-Sinclair potentials. Philos. Mag. Lett. 61, 139–146 (1990)

    Article  Google Scholar 

  27. Myshlavtsev, A.V., Stishenko, P.V.: Modification of the metropolis algorithm for modeling metallic nanoparticles. Omsk Sci. Newsp. 1(107), 21–25 (2012). (in Russian)

    Google Scholar 

Download references

Acknowledgments

This research is supported by the Russian Foundation for Basic Research project No. 18-38-00571 mol_a and the Bulgarian NSF under the grant DFNI-DN 12/5.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vladimir Myasnichenko or Leoneed Kirilov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Myasnichenko, V., Sdobnyakov, N., Kirilov, L., Mikhov, R., Fidanova, S. (2019). Monte Carlo Approach for Modeling and Optimization of One-Dimensional Bimetallic Nanostructures. In: Nikolov, G., Kolkovska, N., Georgiev, K. (eds) Numerical Methods and Applications. NMA 2018. Lecture Notes in Computer Science(), vol 11189. Springer, Cham. https://doi.org/10.1007/978-3-030-10692-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10692-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10691-1

  • Online ISBN: 978-3-030-10692-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics