Skip to main content

New Stabilized Discretizations for Poroelasticity Equations

  • Conference paper
  • First Online:
Numerical Methods and Applications (NMA 2018)

Abstract

In this work, we consider two discretizations of the three-field formulation of Biot’s consolidation problem. They employ the lowest-order mixed finite elements for the flow (Raviart-Thomas-Nédélec elements for the Darcy velocity and piecewise constants for the pressure) and are stable with respect to the physical parameters. The difference is in the mechanics: one of the discretizations uses Crouzeix-Raviart nonconforming linear elements; the other is based on piecewise linear elements stabilized by using face bubbles, which are subsequently eliminated. The numerical solutions obtained from these discretizations satisfy mass conservation: the former directly and the latter after a simple postprocessing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Terzaghi, K.: Theoretical Soil Mechanics. Wiley, New York (1943)

    Book  Google Scholar 

  2. Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 2(12), 155–164 (1941)

    Article  Google Scholar 

  3. Biot, M.A.: Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys. 2(26), 182–185 (1955)

    Article  MathSciNet  Google Scholar 

  4. Showalter, R.E.: Diffusion in poro-elastic media. J. Math. Anal. Appl. 1(251), 310–340 (2000)

    Article  MathSciNet  Google Scholar 

  5. Ženíšek, A.: The existence and uniqueness theorem in Biot’s consolidation theory. Apl. Mat. 3(29), 194–211 (1984)

    MathSciNet  MATH  Google Scholar 

  6. Gaspar, F., Lisbona, F., Vabishchevich, P.: A finite difference analysis of Biot’s consolidation model. Appl. Numer. Math. 4(44), 487–506 (2003)

    Article  MathSciNet  Google Scholar 

  7. Gaspar, F., Lisbona, F., Vabishchevich, P.: Staggered grid discretizations for the quasi-static Biot’s consolidation problem. Appl. Numer. Math. 6(56), 888–898 (2006)

    Article  MathSciNet  Google Scholar 

  8. Nordbotten, J.M.: Cell-centered finite volume discretizations for deformable porous media. Int. J. Numer. Methods Eng. 6(100), 399–418 (2014)

    Article  MathSciNet  Google Scholar 

  9. Nordbotten, J.M.: Stable cell-centered finite volume discretization for Biot equations. SIAM J. Numer. Anal. 2(54), 942–968 (2016)

    Article  MathSciNet  Google Scholar 

  10. Lewis, R.W., Schrefler, B.A.: The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media. Wiley, New York (1998)

    MATH  Google Scholar 

  11. Hu, X., Rodrigo, C., Gaspar, F., Zikatanov, L.: A nonconforming finite element method for the Biot’s consolidation model in poroelasticity. J. Comput. Appl. Math. 310, 143–154 (2017)

    Article  MathSciNet  Google Scholar 

  12. Hong, Q., Kraus, J.: Parameter-robust stability of classical three-field formulation of Biot’s consolidation model. Elec. Transact. Numer. Anal. 48, 202–226 (2018)

    Article  MathSciNet  Google Scholar 

  13. Oyarzúa, R., Ruiz-Baier, R.: Locking-free finite element methods for poroelasticity. SIAM J. Numer. Anal. 5(54), 2951–2973 (2016)

    Article  MathSciNet  Google Scholar 

  14. Lee, J., Mardal, K.-A., Winther, R.: Parameter-robust discretization and preconditioning of Biot’s consolidation model. SIAM J. Sci. Comput. 1(39), A1–A24 (2017)

    Article  MathSciNet  Google Scholar 

  15. Raviart, P.A., Thomas, J.M.: A mixed finite element method for 2-nd order elliptic problems. In: Galligani, I., Magenes, E. (eds.) Mathematical Aspects of Finite Element Methods. LNM, vol. 606, pp. 292–315. Springer, Heidelberg (1977). https://doi.org/10.1007/BFb0064470

    Chapter  Google Scholar 

  16. Nédélec, J.-C.: A new family of mixed finite elements in \(\mathbf{R}^3\). Numerische Mathematik 1(50), 57–81 (1986)

    Article  MathSciNet  Google Scholar 

  17. Nédélec, J.-C.: Mixed finite elements in \({\mathbf{R}}^{3}\). Numerische Mathematik 3(35), 315–341 (1980)

    Article  Google Scholar 

  18. Girault, V., Raviart, P.: Finite Element Methods for Navier-Stokes Equations. Springer Series in Computational Mathematics, Berlin (1986)

    Book  Google Scholar 

  19. Rodrigo, C., Hu, X., Ohm, P., Adler, J.H., Gaspar, F.J., Zikatanov, L.T.: New stabilized discretizations for poroelasticity and the Stokes’ equations. Comput. Methods Appl. Mech. Eng. 341(1), 467–484 (2018)

    Article  MathSciNet  Google Scholar 

  20. Brezzi, F., Douglas Jr., J., Marini, L.D.: Recent results on mixed finite element methods for second order elliptic problems. In: Vistas in Applied Mathematics, Optimization Software, New York, pp. 25–43 (1986)

    Google Scholar 

  21. Brezzi, F., Douglas Jr., J., Durán, R., Fortin, M.: Mixed finite elements for second order elliptic problems in three variables. Numerische Mathematik 2(51), 237–250 (1987)

    Article  MathSciNet  Google Scholar 

  22. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics 15, New-York (1986)

    Google Scholar 

  23. Monk, P.: Finite Element Methods for Maxwell’s Equations. Oxford University Press, New York (2003)

    Book  Google Scholar 

  24. Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer, Heidelberg (2013)

    Book  Google Scholar 

  25. Crouzeix, M., Raviart, P.-A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations I. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge R–3(7), 33–75 (1973)

    MathSciNet  MATH  Google Scholar 

  26. Falk, R.S.: Nonconforming finite element methods for the equations of linear elasticity. Math. Comput. 196(57), 529–550 (1991)

    Article  MathSciNet  Google Scholar 

  27. Falk, R.S., Morley, M.E.: Equivalence of finite element methods for problems in elasticity. SIAM J. Numer. Anal. 6(27), 1486–1505 (1990)

    Article  MathSciNet  Google Scholar 

  28. Hansbo, P., Larson, M.G.: Discontinuous galerkin and the crouzeix-raviart element: application to elasticity. M2AN. Math. Modeling Numer. Anal. 1(37), 63–72 (2003)

    Article  MathSciNet  Google Scholar 

  29. Brenner, S.C.: Korn’s inequalities for piecewise \(H^1\) vector fields. Math. Comput. 247(73), 1067–1087 (2004)

    MathSciNet  MATH  Google Scholar 

  30. Mardal, K.-A., Winther, R.: An observation on Korn’s inequality for nonconforming finite element methods. Math. Comput. 253(75), 1–6 (2006)

    MathSciNet  MATH  Google Scholar 

  31. Brezzi, F., Fortin, M., Marini, L.D.: Error analysis of piecewise constant pressure approximations of Darcy’s law. Comput. Methods Appl. Mech. Eng. 13–16(195), 1547–1559 (2006)

    Article  MathSciNet  Google Scholar 

  32. Baranger, J., Maitre, J.-F., Oudin, F.: Connection between finite volume and mixed finite element methods. RAIRO Modél. Math. Anal. Numér. 4(30), 445–465 (1996)

    Article  MathSciNet  Google Scholar 

  33. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (2006)

    MATH  Google Scholar 

  34. Nochetto, R.H., Savare, G., Verdi, C.: A posteriori error estimates for variable time step discretizations of nonlinear evolution equations. Comm. Pure Appl. Math. 53, 525–589 (2000)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work of F. J. Gaspar is supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement NO 705402, POROSOS. The research of C. Rodrigo is supported in part by the Spanish project FEDER /MCYT MTM2016-75139-R and the DGA (Grupo consolidado PDIE). The work of Zikatanov was partially supported by NSF grants DMS-1720114 and DMS-1819157. The work of Adler, Hu, and Ohm was partially supported by NSF grant DMS-1620063.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Gaspar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gaspar, F.J., Rodrigo, C., Hu, X., Ohm, P., Adler, J., Zikatanov, L. (2019). New Stabilized Discretizations for Poroelasticity Equations. In: Nikolov, G., Kolkovska, N., Georgiev, K. (eds) Numerical Methods and Applications. NMA 2018. Lecture Notes in Computer Science(), vol 11189. Springer, Cham. https://doi.org/10.1007/978-3-030-10692-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10692-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10691-1

  • Online ISBN: 978-3-030-10692-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics