Skip to main content

Abstract

The first attempt to produce a glass ceramic from waste material was reported as early as the 1960s and involved use of several types of slag of ferrous and nonferrous metallurgy, ash, and waste from the mining and chemical industries. Willemite (Zn2SiO4), which is a good host for rare earths to be used in telecommunications, has been produced by different methods from pure materials. However, there is a lack of research on preparation of willemite using waste materials. To date, most research has been carried out on soda lime silicate (SLS) glass doped with different ingredients and rare earths, but little research has been carried out on willemite-based glass ceramics prepared using waste material and doped with erbium oxide (Er2O3). However, use of waste materials, such as SLS glass, as a main source for producing silicate will be economical, inexpensive, and helpful for reducing the aggregation of waste materials in landfills. The main objective of this study is to determine the effects of addition of erbium oxide (Er2O3) on the physical and optical properties of willemite-based glass ceramic sintered at different temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.R. Boccaccini, M. Bücker, J. Bossert, Glass and glass-ceramics from coal fly ash and waste glass. Tile Brick Int. 12, 515–518 (1996)

    Google Scholar 

  2. M. Erol, S. Küçükbayrak, A. Ersoy-Meriçboyu, M.L. Öveçoğlu, Crystallization behaviour of glasses produced from fly ash. J. Eur. Ceram. Soc. 21(16), 2835–2841 (2001)

    Article  Google Scholar 

  3. S. Kumar, K.K. Singh, P. Ramachandrarao, Synthesis of cordierite from fly ash and its refractory properties. J. Mater. Sci. Lett. 19(14), 1263–1265 (2000)

    Article  Google Scholar 

  4. R. Siddique, Wood ash, in Waste Materials and By-Products in Concrete, (Springer, London, 2008), pp. 303–321

    Chapter  Google Scholar 

  5. A. Karamanov, P. Pisciella, C. Cantalini, M. Pelino, Influence of Fe3+/Fe2+ ratio on the crystallisation of iron-rich glasses made with industrial wastes. J. Am. Ceram. Soc. 83, 3153–3157 (2000)

    Article  Google Scholar 

  6. L. Montanaro, N. Bianchini, J.M. Rincon, M. Romero, Sintering behaviour of pressed red mud wastes from zinc hydrometallurgy. Ceram. Int. 27(1), 29–37 (2001)

    Article  Google Scholar 

  7. E. Fidancevska, B. Mangutova, D. Milosevski, M. Milosevski, J. Bossert, Obtaining of dense and highly porous ceramic materials from metallurgical slag. Sci. Sinter. 35, 85–91 (2003)

    Article  Google Scholar 

  8. G.A. Khater, The use of Saudi slag for the production of glass-ceramic materials. Ceram. Int. 28(1), 59–67 (2002)

    Article  Google Scholar 

  9. F. Andreola, L. Barbieri, A. Corradi, I. Lancellotti, New marketable products from inorganic residues. Am. Ceram. Soc. Bull. 3, 9401–9408 (2004)

    Google Scholar 

  10. L. Barbieri, A. Corradi, I. Lancellotti, Thermal and chemical behaviour of different glasses containing steel fly ash and their transformation into glass-ceramics. J. Eur. Ceram. Soc. 22(11), 1759–1765 (2002)

    Article  Google Scholar 

  11. H.S. Kim, J.M. Kim, T. Oshikawa, K. Ikeda, Production and properties of glass-ceramics from incinerator fly ash. Mater. Sci. Forum 439, 180–185 (2003)

    Article  Google Scholar 

  12. J. Kim, H. Kim, Glass-ceramic produced from a municipal waste incinerator fly ash with high Cl content. J. Eur. Ceram. Soc. 24(8), 2373–2382 (2004)

    Article  Google Scholar 

  13. L. Stoch, Homogeneity and crystallisation of vitrified municipal waste incinerator ashes. Soc. Glass Technol. 45, 71–73 (2004)

    Google Scholar 

  14. P. Zhang, J. Yan, Mossbauer and infrared spectroscopy investigation on glass-ceramics using red mud. Z. Metallk. 91, 764–768 (2000)

    Google Scholar 

  15. M.M. Sokolova, V.S. Perunova, V.V. Sepanov, N.V. Kozlov, A glass ceramic material based on the waste from lamp production. Glas. Ceram. 43, 133–135 (1986)

    Article  Google Scholar 

  16. Z. Gao, C.H. Drummond III, Thermal analysis of nucleation and growth of crystalline phases in vitrified industrial wastes. J. Am. Ceram. Soc. 82, 561–565 (1999)

    Article  Google Scholar 

  17. W. Holand, G. Beall, Thermal expansion properties of a spodumene-willemite glass ceramic, in Glass-Ceramic Technology, (The American Ceramic Society, Westerville, 2002)

    Google Scholar 

  18. E. Bernardo, R. Castellan, S. Hreglich, Sintered glass-ceramics from mixtures of wastes. Ceram. Int. 33(1), 27–33 (2007)

    Article  Google Scholar 

  19. R.D. Rawlings, J.P. Wu, A.R. Boccaccini, Glass-ceramics: their production from wastes-a review. J. Mater. Sci. 41(3), 733–761 (2006)

    Article  Google Scholar 

  20. M.W. Davies, B. Kerrison, W.E. Gross, W.J. Robson, D.F. Wichell, Slagceram: a glass-ceramic from blast-furnace slag. J. Iron Steel Inst. 208, 348–370 (1970)

    Google Scholar 

  21. A.A. Francis, A.R. Boccaccini, R.D. Rawlings, Production of glass-ceramics from coal ash and waste glass mixtures. Key Eng. Mater. 206-213, 2049–2052 (2002)

    Article  Google Scholar 

  22. A.A. Francis, R.D. Rawlings, R. Sweeney, A.R. Boccaccini, Crystallization kinetic of glass particles prepared from a mixture of coal ash and soda-lime cullet glass. J. Non-Cryst. Solids 333(2), 187–193 (2004)

    Article  Google Scholar 

  23. L. Barbieri, A. Corradi, I. Lancellotti, G.C. Pellacani, Sintering and crystallisation behaviour of glass frits made from silicate waste. Glass Technol. 44, 184–190 (2003)

    Google Scholar 

  24. E. Bernardo, M. Varrasso, F. Cadamuro, S. Hreglich, Vitrification of wastes and preparation of chemically stable sintered glass-ceramic products. J. Non-Cryst. Solids 352(38–39), 4017–4023 (2006)

    Article  Google Scholar 

  25. A. Karamanov, Granite like materials from hazardous wastes obtained by sinter crystallisation of glass frits. Adv. Appl. Ceram. 108, 14–21 (2009)

    Article  Google Scholar 

  26. N. Marinoni, D. D’Alessio, V. Diella, A. Pavese, F. Francescon, Effects of soda–lime–silica waste glass on mullite formation kinetics and micro-structures development in vitreous ceramics. J. Environ. Manag. 124, 100–107 (2013)

    Article  Google Scholar 

  27. S.N. Salama, S.M. Salman, H. Darwish, The effect of nucleation catalysts on crystallization characteristics of aluminosilicate glasses. Ceramics-Silikáty 46, 15–23 (2002)

    Google Scholar 

  28. S.R. Scholes, Modern Glass Practice (CBI Publishing Company, Boston, 1975), pp. 1–493

    Google Scholar 

  29. T. Toya, Y. Kameshima, A. Yasumori, K. Okada, Preparation and properties of glass-ceramics from wastes (Kira) of silica sand and kaolin clay refining. J. Eur. Ceram. Soc. 24(8), 2367–2372 (2004)

    Article  Google Scholar 

  30. M. Braun, Z.D. Geolog, Thermal and chemical methods for producing zinc silicate (willemite): A review. Gesellschaft 9, 354–370 (1857)

    Google Scholar 

  31. M. Le’vy, M. Annales, Dont l’auteur est très ... un silicate de zinc nouvellement découvert à la Vieille-Montagne, célèbre mine de zinc, Paris. 4e`me se´rie 4, 507–520 (1843)

    Google Scholar 

  32. J. Schneider, M. Boni, C. Laukamp, T. Bechstädt, V. Petzel, Willemite (Zn2SiO4) as a possible Rb–Sr geochronometer for dating nonsulfide Zn–Pb mineralization: examples from the Otavi Mountainland (Namibia). Ore Geol. Rev. 33(2), 152–167 (2008)

    Article  Google Scholar 

  33. M. Boni, D. Large, Willemite in the Belgian non-sulphide deposits: a fluid inclusion study. Econ. Geol. 98, 715–729 (2003)

    Article  Google Scholar 

  34. P. Bowen, C. Carry, From powders to sintered pieces: forming, transformations and sintering of nanostructured ceramic oxides. Powder Technol. 128(2–3), 248–255 (2002)

    Article  Google Scholar 

  35. V. Coppola, M. Boni, H.A. Gilg, G. Balassone, L. Dejonghe, The “calamine” nonsulfide Zn–Pb deposits of Belgium: petrographical, mineralogical and geochemical characterization. Ore Geol. Rev. 33(2), 187–210 (2008)

    Article  Google Scholar 

  36. M.W. Hitzman, N.A. Reynolds, D.F. Sangster, C.R. Allen, C.E. Carman, Preparation and characterizations of green phosphors. Econ. Geol. 98, 685–714 (2003)

    Article  Google Scholar 

  37. F.H. Pough, Production and properties of zinc silicate mineral. Am. Mineral. 26, 92–102 (1941)

    Google Scholar 

  38. C. Palache, T. Feldmann, J. Stel, C.R. Ronda, P.J. Schmidt, Sintering effects on mechanical properties of glass-reinforced zinc silicate. Am. Mineral. 13, 330–333 (1928)

    Google Scholar 

  39. C. Feldmann, T. Justel, C.R. Ronda, P.J. Schmidt, Tripolyphosphate as precursor for REPO(4):Eu (3+) (RE = Y, La, Gd) by a polymeric method. Adv. Funct. Mater. 13, 511–516 (2003)

    Article  Google Scholar 

  40. D.E. Harrison, Preparation and characterizations of Zn2:Mn phosphors. J. Electrochem. Soc. 107, 210–217 (1960)

    Article  Google Scholar 

  41. H.W. Leverenz, An Introduction to Luminescence of Solids (Wiley, New York, 1950), pp. 399–401

    Google Scholar 

  42. T. Minami, Erbium-doped glasses for fiber amplifiers. Solid State Electron. 47, 2237–2243 (2003)

    Article  Google Scholar 

  43. C.R. Ronda, Characterisation of a glass and a glass-ceramic obtained from municipal incinerator ash. J. Lumin. 72-74, 49–54 (1997)

    Article  Google Scholar 

  44. H. Liang, Q. Zeng, Z. Tian, H. Lin, Q. Su, G. Zhang, Y. Fu, Intense emission of Ca5 ( PO4 ) 3F : Tb3 + under VUV excitation and its potential application in PDPs. J. Electrochem. Soc. 154, J177–J180 (2007)

    Article  Google Scholar 

  45. S. Zhang, Structure and luminescence properties of Mn-doped Zn2SiO4 prepared with extracted mesoporous silica. Mater. Res. Bull. 46(6), 791–795 (2006)

    Google Scholar 

  46. E.N. Bunting, Phase equilibria in the system SiO2-ZnO. Bur. Standards J. Res 4, 131–136 (1930)

    Article  Google Scholar 

  47. J. Williamson, F.P. Glasser, Optical and physical properties of Er3+-doped oxy-fluoride tellurite glasses. Glas. Phys. Chem. 5, 52–59 (1964)

    Google Scholar 

  48. Y. Syono, S. Akimoto, Y. Matsui, Crystallization kinetic of glass particles prepared from a mixture of coal ash and soda-lime cullet glass. J. Solid State Chem. 3, 369–380 (1971)

    Article  Google Scholar 

  49. H.P. Rooksby, A.H. McKeag, Trans. Faraday Soc. 37, 308–311 (1941)

    Article  Google Scholar 

  50. F. Marumo, Y. Syono, Effects of soda–lime–silica waste glass on transition of Er3+ formation kinetics and micro-structures development in vitreous ceramics. Acta Crystallogr. B 27, 1868–1870 (1971)

    Article  Google Scholar 

  51. Y. Syono, S. Akimoto, Y. Matsui, High pressure transformations in zinc silicates. J. Solid State Chem. 3, 369–380 (1971)

    Article  Google Scholar 

  52. A.E. Ringwood, A. Major, High pressure transformations in zinc germanates and silicates. Nature 215, 1367–1368 (1967)

    Article  Google Scholar 

  53. A.M. Doroshev, M. Olesch, V.M. Logvinov, I.J. Malinovsky, Preparation and characterization of Er3+-doped TeO2-based oxyhalide glasses. Mineral 27, 277–288 (1983)

    Google Scholar 

  54. E.N. Bunting, Synthesis, properties and mineralogy of important inorganic materials. J. Am. Ceram. Soc. 13, 5–10 (1930)

    Article  Google Scholar 

  55. B.G. Bagley, E.M. Vogel, W.G. French, G.A. Pasteur, J.N. Gan, J. Tauc, The optical properties of a soda-lime-silica glass in the region from 0.006 to 22 eV. J. Non-Cryst. Solids 22(2), 423–429 (1976)

    Article  Google Scholar 

  56. G. Tammann, Chemische Reaktionen in pulverförmigen Gemengen zweier Kristallarten. Z. Anorg. Allg. Chem. 149(1), 21–98 (1925)

    Google Scholar 

  57. A. Pabst, Röntgenuntersuchung über die Bildung von Zinksilicaten. Z. Phys. Chem. 142A(1), 227–232 (1929)

    Article  Google Scholar 

  58. E.J. King, The phosphatases, alkaline phosphatase. Postgrad. Med. J. 27(304), 64–66 (1951)

    Article  Google Scholar 

  59. S. Takagi, Dynamical theory of diffraction applicable to crystals with any kind of small distortion. Acta Crystallogr. 15(12), 1311–1312 (1962)

    Article  Google Scholar 

  60. R. Morimo, K. Matae, Preparation of Zn2SiO4:Mn phosphors by alkoxide method. Mater. Res. Bull. 24(2), 175–179 (1989)

    Article  Google Scholar 

  61. H. Su, D.L. Johnson, Master sintering curve: a practical approach to sintering. J. Am. Ceram. Soc. 79(12), 3211–3217 (1996)

    Article  Google Scholar 

  62. H. Yang, J. Shi, M. Gong, A novel approach for preparation of Zn2SiO4: Tb nanoparticles by sol-gel-microwave heating. J. Mater. Sci. 40(22), 6007–6010 (2005). https://doi.org/10.1007/s10853-005-2632-1

  63. H. Yang et al., Synthesis and photoluminescence of Eu3+- or Tb 3+-doped Mg2SiO4 nanoparticles prepared by a combined novel approach. J. Lumin. 118(2), 257–264 (2006)

    Article  Google Scholar 

  64. L. Reynaud et al., A new solution route to silicates. Part 3: Aqueous sol-gel synthesis of willemite and potassium antimony silicate. Mater. Res. Bull. 31(9), 1133–1139 (1996)

    Article  Google Scholar 

  65. S. Zhang et al., Synthesis and electrochemical properties of Zn2SiO4 nano/mesorods. Mater. Lett. 100, 89–92 (2013)

    Article  Google Scholar 

  66. K. Kodaira, S. Ito, T. Matsushita, Hydrothermal growth of willemite single crystals in acidic solutions. J. Cryst. Growth 29(1), 123–124 (1975)

    Article  Google Scholar 

  67. K.-I. Komatsu, M. Mizuno, R. Kodaira, Effect of methionine on cephalosporin C and penicillin N production by a mutant of Cephalosporium acremonium. J. Antibiot. 28(11), 881–888 (1975)

    Article  Google Scholar 

  68. A. Roy, S. Polarz, S. Rabe, B. Rellinghaus, H. Zahres, F.E. Kruis, M. Driess, First preparation of nanocrystalline zinc silicate by chemical vapor synthesis using an organometallic single-source precursor. Chemistry 10(6), 1565–1575 (2004)

    Article  Google Scholar 

  69. L. Hench, J. Wilson, An introduction to bioceramics. Adv. Ser. Ceram. 18, 1–389 (1999)

    Google Scholar 

  70. J. Du, L. Kokou, Europium environment and clustering in europium doped silica and sodium silicate glasses. J. Non-Cryst. Solids 357(11), 2235–2240 (2011)

    Article  Google Scholar 

  71. Z. Pan et al., Terbium-activated lithium–lanthanum–aluminosilicate oxyfluoride scintillating glass and glass-ceramic. Nucl. Instrum. Methods Phys. Res. Section A 594(2), 215–219 (2008)

    Article  Google Scholar 

  72. M.-L. Brandily-Anne et al., Specific absorption spectra of cerium in multicomponent silicate glasses. J. Non-Cryst. Solids 356(44), 2337–2343 (2010)

    Article  Google Scholar 

  73. E.F. Chillcce et al., Optical and physical properties of Er3+-doped oxy-fluoride tellurite glasses. Opt. Mater. 33(3), 389–396 (2011)

    Article  Google Scholar 

  74. L. Fortes et al., Preparation and characterization of Er3+-doped TeO2-based oxyhalide glasses. J. Non-Cryst. Solids 324(1), 150–158 (2003)

    Google Scholar 

  75. L.C. Courrol et al., Lead fluoroborate glasses doped with Nd3+. J. Lumin. 102–103, 101–105 (2003)

    Google Scholar 

  76. I.-I. Oprea, H. Hesse, K. Betzler, Luminescence of erbium-doped bismuth–borate glasses. Opt. Mater. 28(10), 1136–1142 (2006)

    Article  Google Scholar 

  77. S. Rada et al., Spectroscopic properties and ab initio calculations on the structure of erbium–zinc-borate glasses and glass ceramics. J. Non-Cryst. Solids 358(1), 30–35 (2012)

    Article  Google Scholar 

  78. D. Bento dos Santos et al., Itaquaquecetuba formation palynostratigraphy, São Paulo Basin, Brazil. Rev. Bras. Paleontolog. 13, 205–220 (2010)

    Article  Google Scholar 

  79. M. Mortier, P. Goldner, C. Chateau, M. Genotelle, Erbium doped glass–ceramics: concentration effect on crystal structure and energy transfer between active ions. J. Alloys Compd. 323–324, 245–249 (2001)

    Article  Google Scholar 

  80. Y. Jestin et al., Erbium activated HfO2 based glass–ceramics waveguides for photonics. J. Non-Cryst. Solids 20, 494–497 (2007)

    Google Scholar 

  81. F. Oktar, G. Göller, Sintering effects on mechanical properties of glass-reinforced hydroxyapatite composites. Ceram. Int. 28(6), 617–621 (2002)

    Article  Google Scholar 

  82. A. Verma, R. Chatterjee, Effect of zinc concentration on the structural, electrical and magnetic properties of mixed Mn–Zn and Ni–Zn ferrites synthesized by the citrate precursor technique. J. Magn. Magn. Mater. 306, 313–319 (2006)

    Article  Google Scholar 

  83. N.Y. Mostafa, A.A. Shaltout, S. Abdel-Aal, A. El-maghraby, Sintering mechanism of blast furnace slag–kaolin ceramics. Mater. Des. 31(8), 3677–3682 (2010)

    Article  Google Scholar 

  84. M.-T. Tsai et al., Photoluminescence of titanium-doped zinc orthosilicate phosphor gel films. IOP Conf. Ser. Mater. Sci. Eng. 18(3), 032012 (2011)

    Article  Google Scholar 

  85. M. Takesue, H. Hayashi, R.L. Smith, Thermal and chemical methods for producing zinc silicate (willemite): a review. Prog. Cryst. Growth Charact. Mater. 55(3), 98–124 (2009)

    Article  Google Scholar 

  86. G.T. Chandrappa, S. Ghosh, K.C. Patil, Synthesis of glass-ceramic. J. Mater. Synth. Process. 7(1), 273–282 (1999)

    Article  Google Scholar 

  87. C. Lin, P. Shen, Sol-gel synthesis of zinc orthosilicate. J. Non-Cryst. Solids 171(3), 281–289 (1994)

    Article  Google Scholar 

  88. R.P. Sreekanth Chakradhar, B.M. Nagabhushana, G.T. Chandrappa, K.P. Ramesh, J.L. Rao, J. Opt. Soc. Am. 121, 10250–10259 (2004)

    Google Scholar 

  89. P. Taret, Etude infra-rouge des orthosilicates et des orthogermanates Une nouvelle methode d’interprétation des spectres. Spectrochim. Acta 18(4), 467–483 (1962)

    Google Scholar 

  90. M. Bosca, L. Pop, G. Borodi, P. Pascuta, E. Culea, XRD and FTIR structural investigations of erbium-doped bismuth–lead–silver glasses and glass ceramics. J. Alloys Compd. 479(1–2), 579–582 (2009)

    Article  Google Scholar 

  91. I. Jlassi, H. Elhouichet, S. Hraiech, M. Ferid, Effect of heat treatment on the structural and optical properties of tellurite glasses doped erbium. J. Lumin. 132(3), 832–840 (2012)

    Article  Google Scholar 

  92. A. Polman, Erbium implanted thin film photonic materials. J. Appl. Phys. 82(1), 1–39 (1997)

    Article  MathSciNet  Google Scholar 

  93. J. Laegsgaard, Theory of Al2O3 incorporation in SiO2. Phys. Rev. B 65(17), 174104 (2002)

    Article  Google Scholar 

  94. F. Auzel, On the maximum splitting of the (2F7/2) ground state in Yb3+-doped solid state laser materials. J. Lumin. 93(2), 129–135 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive licence to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sarrigani, G.V., Amiri, I.S. (2019). Literature Review of Glass-Ceramic and Willemite Production from Waste Materials. In: Willemite-Based Glass Ceramic Doped by Different Percentage of Erbium Oxide and Sintered in Temperature of 500-1100C. SpringerBriefs in Electrical and Computer Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-10644-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10644-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10643-0

  • Online ISBN: 978-3-030-10644-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics