Skip to main content

Reducing the Human-in-the-Loop Component of the Scheduling of Large HTC Workloads

  • Conference paper
  • First Online:
Job Scheduling Strategies for Parallel Processing (JSSPP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11332))

Included in the following conference series:

Abstract

A common characteristic to major physics experiments is an ever increasing need of computing resources to process experimental data and generate simulated data. The IN2P3 Computing Center provides its 2,500 users with about 35,000 cores and processes millions of jobs every month. This workload is composed of a vast majority of sequential jobs that corresponds to Monte-Carlo simulations and related analysis made on data produced on the Large Hadron Collider at CERN.

To schedule such a workload under specific constraints, the CC-IN2P3 relied for 20 years on an in-house job and resource management system complemented by an operation team who can directly act on the decisions made by the job scheduler and modify them. This system has been replaced in 2011 but legacy rules of thumb remained. Combined to other rules motivated by production constraints, they may act against the job scheduler optimizations and force the operators to apply more corrective actions than they should.

In this experience report from a production system, we describe the decisions made since the end of 2016 to either transfer some of the actions done by operators to the job scheduler or make these actions become unnecessary. The physical partitioning of resources in distinct pools has been replaced by a logical partitioning that leverages scheduling queues. Then some historical constraints, such as quotas, have been relaxed. For instance, the number of concurrent jobs from a given user group allowed to access a specific resource, e.g., a storage subsystem, has been progressively increased. Finally, the computation of the fair-share by the job scheduler has been modified to be less detrimental to small groups whose jobs have a low priority. The preliminary but promising results coming from these modifications constitute the beginning of a long-term activity to change the operation procedures applied to the computing infrastructure of the IN2P3 Computing Center.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chapin, S.J., et al.: Benchmarks and standards for the evaluation of parallel job schedulers. In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP 1999. LNCS, vol. 1659, pp. 67–90. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-47954-6_4

    Chapter  Google Scholar 

  2. Dutot, P.-F., Mercier, M., Poquet, M., Richard, O.: Batsim: a realistic language-independent resources and jobs management systems simulator. In: Desai, N., Cirne, W. (eds.) JSSPP 2015-2016. LNCS, vol. 10353, pp. 178–197. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61756-5_10

    Chapter  Google Scholar 

  3. Feitelson, D., Tsafrir, D., Krakov, D.: Experience with using the parallel workloads archive. J. Parallel Distrib. Comput. 74(10), 2967–2982 (2014)

    Article  Google Scholar 

  4. Jackson, D., Snell, Q., Clement, M.: Core algorithms of the Maui scheduler. In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP 2001. LNCS, vol. 2221, pp. 87–102. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45540-X_6

    Chapter  Google Scholar 

  5. Kay, J., Lauder, P.: A fair share scheduler. Commun. ACM 31(1), 44–55 (1988)

    Article  Google Scholar 

  6. Klusáček, D., Tóth, Š.: On interactions among scheduling policies: finding efficient queue setup using high-resolution simulations. In: Silva, F., Dutra, I., Santos Costa, V. (eds.) Euro-Par 2014. LNCS, vol. 8632, pp. 138–149. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09873-9_12

    Chapter  Google Scholar 

  7. Klusáček, D., Tóth, Š., Podolníková, G.: Real-life experience with major reconfiguration of job scheduling system. In: Desai, N., Cirne, W. (eds.) JSSPP 2015-2016. LNCS, vol. 10353, pp. 83–101. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61756-5_5

    Chapter  Google Scholar 

  8. Klusáček, D., Tóth, V., Podolníková, G.: Complex Job Scheduling Simulations with Alea 4. In: Proceedings of the 9th EAI International Conference on Simulation Tools and Techniques (Simutools 2016), pp. 124–129. ICST, Prague (2016)

    Google Scholar 

  9. Michelotto, M., et al.: A comparison of HEP code with SPEC 1 benchmarks on multi-core worker nodes. J. Phys. Conf. Ser. 219(5), 052009 (2010)

    Article  Google Scholar 

  10. The ATLAS Collaboration: Observation of a new particle in the search for the standard model Higgs Boson with the ATLAS detector at the LHC. Phys. Lett. B 716(1), 1–29 (2012). https://doi.org/10.1016/j.physletb.2012.08.020

    Article  Google Scholar 

  11. The CMS Collaboration: Observation of a New Boson at a Mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 716(1), 30–61 (2012). https://doi.org/10.1016/j.physletb.2012.08.021

    Article  Google Scholar 

  12. The IN2P3/CNRS Computing Center. http://cc.in2p3.fr/en/

  13. The LIGO Scientific Collaboration and Virgo Collaboration: Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016). https://doi.org/10.1103/PhysRevLett.116.061102

    Article  MathSciNet  Google Scholar 

  14. Univa Corporation: Grid Engine. http://www.univa.com/products/

Download references

Acknowledgements

The authors would like to thank the members of the Operation and Applications teams of the CC-IN2P3 for their help in the preparation of this experience report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Suter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Azevedo, F., Gombert, L., Suter, F. (2019). Reducing the Human-in-the-Loop Component of the Scheduling of Large HTC Workloads. In: Klusáček, D., Cirne, W., Desai, N. (eds) Job Scheduling Strategies for Parallel Processing. JSSPP 2018. Lecture Notes in Computer Science(), vol 11332. Springer, Cham. https://doi.org/10.1007/978-3-030-10632-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10632-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10631-7

  • Online ISBN: 978-3-030-10632-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics