Skip to main content

Minimum Membership Covering and Hitting

  • Conference paper
  • First Online:
WALCOM: Algorithms and Computation (WALCOM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11355))

Included in the following conference series:

Abstract

Set cover is a well-studied problem with application in many fields. A well-known variation of this problem is the Minimum Membership Set Cover problem. In this problem, given a set of points and a set of objects, the objective is to cover all points while minimizing the maximum number of objects that contain any one point. A dual of this problem is the Minimum Membership Hitting Set problem. In this problem, given a set of points and a set of objects, the objective is to stab all of the objects while minimizing the maximum number of points that an object contains. We study both of these variations in a geometric setting with various types of geometric objects in the plane, including axis-parallel line segments, axis-parallel strips, rectangles that are anchored on a horizontal line from one side, rectangles that are stabbed by a horizontal line, and rectangles that are anchored on one of two horizontal lines (i.e., each rectangle shares at least one boundary edge (top or bottom) with one of the input horizontal lines). For each of these problems either we prove NP-hardness or design a polynomial-time algorithm. More precisely, we show that it is NP-complete to decide whether there exists a solution with depth exactly 1 for either the Minimum Membership Set Cover or the Minimum Membership Hitting Set problem. We also provide approximation algorithms for some of the problems. In addition, we study a generalized version of the Minimum Membership Hitting Set problem.

J.S.B. Mitchell—Partially supported by the National Science Foundation (CCF-1526406) and the US-Israel Binational Science Foundation (project 2016116).

S. Pandit—Partially supported by the Indo-US Science & Technology Forum (IUSSTF) under the SERB Indo-US Postdoctoral Fellowship scheme with grant number 2017/94, Department of Science and Technology, Government of India.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chan, T.M., Grant, E.: Exact algorithms and APX-hardness results for geometric packing and covering problems. Comput. Geom. 47(2, Part A), 112–124 (2014)

    Article  MathSciNet  Google Scholar 

  2. Dom, M., Guo, J., Niedermeier, R., Wernicke, S.: Red-blue covering problems and the consecutive ones property. J. Comput. Geom. 6(3), 393–407 (2008)

    MathSciNet  MATH  Google Scholar 

  3. Erlebach, T., van Leeuwen, E.J.: Approximating geometric coverage problems. In: SODA, pp. 1267–1276 (2008)

    Google Scholar 

  4. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-Completeness. W.H. Freeman & Co., New York (1990)

    MATH  Google Scholar 

  5. Knuth, D.E., Raghunathan, A.: The problem of compatible representatives. SIAM J. Discrete Math. 5(3), 422–427 (1992)

    Article  MathSciNet  Google Scholar 

  6. Kuhn, F., von Rickenbach, P., Wattenhofer, R., Welzl, E., Zollinger, A.: Interference in cellular networks: the minimum membership set cover problem. In: COCOON, pp. 188–198 (2005)

    Google Scholar 

  7. Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11(2), 329–343 (1982)

    Article  MathSciNet  Google Scholar 

  8. Mulzer, W., Rote, G.: Minimum-weight triangulation is NP-hard. J. ACM 55(2), 11:1–11:29 (2008)

    Article  MathSciNet  Google Scholar 

  9. Nandy, S.C., Pandit, S., Roy, S.: Covering points: minimizing the maximum depth. In: CCCG (2017)

    Google Scholar 

  10. Narayanaswamy, N.S., Dhannya, S.M., Ramya, C.: Minimum membership hitting sets of axis parallel segments. In: Wang, L., Zhu, D. (eds.) COCOON 2018. LNCS, vol. 10976, pp. 638–649. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94776-1_53

    Chapter  Google Scholar 

  11. Raz, R., Safra, S.: A sub-constant error-probability low-degree test, and a sub-constant error-probability PCP characterization of NP. In: STOC, pp. 475–484 (1997)

    Google Scholar 

  12. Schaefer, T.J.: The complexity of satisfiability problems. In: STOC, pp. 216–226 (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Supantha Pandit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mitchell, J.S.B., Pandit, S. (2019). Minimum Membership Covering and Hitting. In: Das, G., Mandal, P., Mukhopadhyaya, K., Nakano, Si. (eds) WALCOM: Algorithms and Computation. WALCOM 2019. Lecture Notes in Computer Science(), vol 11355. Springer, Cham. https://doi.org/10.1007/978-3-030-10564-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10564-8_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10563-1

  • Online ISBN: 978-3-030-10564-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics