Skip to main content

Functional Roles of Seed-Inhabiting Endophytes of Rice

  • Chapter
  • First Online:
Seed Endophytes

Abstract

Endophytic microbes including bacteria and fungi inhabiting in seed tissues have recently gained significant importance owing to a diversity of roles that they play and eventually resulting in improved plant growth as well as plant fitness. Some of the major roles played by seed endophytic microbes include plant growth promotion by enhanced nutrient acquisition or production of growth hormones, nitrogen fixation, phosphate solubilisation, and protection against pathogens as well as abiotic stresses. Since, rice is one of the important staple crop across the globe, there is a great need to explore and decipher the roles of the endophytic community present inside it. This chapter focuses on the diversity and distribution of rice seed endophytes, their transmission along with the various functional roles that they play inside the plants with an aim to provide deep insights on rice seed endophytes as plant growth promoting and biocontrol agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arnold AE, Maynard Z et al (2000) Are tropical fungal endophytes hyperdiverse? Ecol Lett 3(4):267–274

    Article  Google Scholar 

  • Arnold AE, Mejía LC et al (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci USA 100(26):15649–15654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atugala DM, Deshappriya N (2015) Effect of endophytic fungi on plant growth and blast disease incidence of two traditional rice varieties. J Natl Sci Found 43(2):173

    Google Scholar 

  • Azevedo JL, Maccheroni W Jr et al (2000) Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Electron J Biotechnol 3(1):15–16

    Article  Google Scholar 

  • Barac T, Taghavi S et al (2004) Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat Biotechnol 22(5):583

    Article  CAS  PubMed  Google Scholar 

  • Barazani O, Friedman J (2001) Allelopathic bacteria and their impact on higher plants. Crit Rev Microbiol 27(1):41–55

    Article  CAS  PubMed  Google Scholar 

  • Barrow JR, Osuna P (2002) Phosphorus solubilization and uptake by dark septate fungi in fourwing saltbush, Atriplex canescens (Pursh) Nutt. J Arid Environ 51(3):449–459

    Article  Google Scholar 

  • Bashan Y, De-Bashan LE (2005) Plant growth-promoting. In: Encyclopedia of soils in the environment, vol 1. Elsevier, Oxford, pp 103–115

    Chapter  Google Scholar 

  • Beltran-Garcia MJ, White JF Jr et al (2014) Nitrogen acquisition in Agave tequilana from degradation of endophytic bacteria. Sci Rep 4:6938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertani I, Abbruscato P et al (2016) Rice bacterial endophytes: isolation of a collection, identification of beneficial strains and microbiome analysis. Environ Microbiol Rep 8(3):388–398

    Article  CAS  PubMed  Google Scholar 

  • Boddey RM, Oliveira OC et al (1995) Biological nitrogen fixation associated with sugar cane and rice: contributions and prospects for improvement. Plant Soil 174(1):195–209

    Article  CAS  Google Scholar 

  • Brader G, Corretto E et al (2017) Metagenomics of plant microbiomes. In: Functional metagenomics: tools and applications. Springer, Cham, pp 179–200

    Chapter  Google Scholar 

  • Carroll GC (1991) Fungal associates of woody plants as insect antagonists in leaves and stems. In: Microbial mediation of plant-herbivore interactions. Wiley, New York, pp 253–271

    Google Scholar 

  • Chatterjee A, Valasubramanian R et al (1996) Isolation of ant mutants of Pseudomonas fluorescens strain Pf7-14 altered in antibiotic production, cloning of ant+ DNA, and evaluation of the role of antibiotic production in the control of blast and sheath blight of rice. Biol Control 7(2):185–195

    Article  Google Scholar 

  • Cheplick GP, Clay K et al (1989) Interactions between infection by endophytic fungi and nutrient limitation in the grasses Lolium perenne and Festuca arundinacea. New Phytol 111(1):89–97

    Article  Google Scholar 

  • Cho SJ, Lim WJ et al (2003) Endophytic colonization of balloon flower by antifungal strain Bacillus sp. CY22. Biosci Biotechnol Biochem 67(10):2132–2138

    Article  CAS  PubMed  Google Scholar 

  • Cho HS, Park SY et al (2007) Interference of quorum sensing and virulence of the rice pathogen Burkholderia glumae by an engineered endophytic bacterium. FEMS Microbiol Ecol 60(1):14–23

    Article  CAS  PubMed  Google Scholar 

  • Clay K (1989) Clavicipitaceous endophytes of grasses: their potential as biocontrol agents. Mycol Res 92(1):1–12

    Article  Google Scholar 

  • Compant S, Clément C et al (2010) Plant growth-promoting bacteria in the rhizo-and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42(5):669–678

    Article  CAS  Google Scholar 

  • Cottyn B, Regalado E et al (2001) Bacterial populations associated with rice seed in the tropical environment. Phytopathology 91(3):282–292

    Article  CAS  PubMed  Google Scholar 

  • De Vleesschauwer D, Djavaheri M et al (2008) Pseudomonas fluorescens WCS374r-induced systemic resistance in rice against Magnaporthe oryzae is based on pseudobactin-mediated priming for a salicylic acid-repressible multifaceted defense response. Plant Physiol 148(4):1996–2012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Doty SL, Oakley B et al (2009) Diazotrophic endophytes of native black cottonwood and willow. Symbiosis 47(1):23–33

    Article  CAS  Google Scholar 

  • Dunne C, Crowley JJ et al (1997) Biological control of Pythium ultimum by Stenotrophomonas maltophilia W81 is mediated by an extracellular proteolytic activity. Microbiology 143(12):3921–3931

    Article  CAS  PubMed  Google Scholar 

  • Elbeltagy A, Nishioka K et al (2000) Isolation and characterization of endophytic bacteria from wild and traditionally cultivated rice varieties. Soil Sci Plant Nutr 46(3):617–629

    Article  Google Scholar 

  • Elbeltagy A, Nishioka K et al (2001) Endophytic colonization and in planta nitrogen fixation by a Herbaspirillum sp. isolated from wild rice species. Appl Environ Microbiol 67(11):5285–5293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farooq M, Jabran K et al (2011) The role of allelopathy in agricultural pest management. Pest Manag Sci 67:493–506

    Article  CAS  PubMed  Google Scholar 

  • Feng Y, Shen D et al (2006) Rice endophyte Pantoea agglomerans YS19 promotes host plant growth and affects allocations of host photosynthates. J Appl Microbiol 100(5):938–945

    Article  CAS  PubMed  Google Scholar 

  • Fisher PJ, Petrini O (1992) Fungal saprobes and pathogens as endophytes of rice (Oryza sativa L.). New Phytol 120(1):137–143

    Article  Google Scholar 

  • Fravel DR (1988) Role of antibiosis in the biocontrol of plant diseases. Annu Rev Phytopathol 26(1):75–91

    Article  CAS  Google Scholar 

  • Freeman EM (1904) The seed-fungus of Lolium temulentum L., the darnel. Philos Trans R Soc Lond B 196(214–224):1–27

    Article  Google Scholar 

  • Gagne-Bourgue F, Aliferis KA et al (2013) Isolation and characterization of indigenous endophytic bacteria associated with leaves of switchgrass (Panicum virgatum L.) cultivars. J Appl Microbiol 114(3):836–853

    Article  CAS  PubMed  Google Scholar 

  • Glass AD (1989) Plant mineral nutrition. An introduction to current concepts. Jones and Bartlett, Boston

    Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41(2):109–117

    Article  CAS  Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Penrose DM et al (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190(1):63–68

    Article  CAS  PubMed  Google Scholar 

  • Gond SK, Bergen MS, Torres MS, White Jr JF (2015) Endophytic bacillus spp. produce antifungal lipopeptides and induce host defence gene expression in maize. Microbiol Res 172:79–87

    Article  CAS  PubMed  Google Scholar 

  • Gyaneshwar P, James EK et al (2001) Endophytic colonization of rice by a diazotrophic strain of Serratia marcescens. J Bacteriol 183:2634–2645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hallmann J, Quadt-Hallmann A et al (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43(10):895–914

    Article  CAS  Google Scholar 

  • Hardoim PR, van Overbeek LS et al (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16(10):463–471

    Article  CAS  PubMed  Google Scholar 

  • Hardoim PR, Nazir R et al (2013) The new species Enterobacter oryziphilus sp. nov. and Enterobacter oryzendophyticus sp. nov. are key inhabitants of the endosphere of rice. BMC Microbiol 13(1):164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodgson S, Cates C et al (2014) Vertical transmission of fungal endophytes is widespread in forbs. Ecol Evol 4(8):1199–1208

    Article  PubMed  PubMed Central  Google Scholar 

  • Holguin G, Patten CL (1999) Biochemical and genetic mechanisms used by plant growth promoting bacteria. World Scientific, London

    Google Scholar 

  • Hollis J (1949) Location of bacteria in healthy potato tissue. Phytopathology 39(1):9–10

    Google Scholar 

  • Honma M, Shimomura T (1978) Metabolism of 1-aminocyclopropane-1-carboxylic acid. Agric Biol Chem 42(10):1825–1831

    CAS  Google Scholar 

  • Hornok L (2000) Genetically modified microorganisms in biological control. Növényvédelem 36(5):229–237

    Google Scholar 

  • Hoysted GA, Kowal J et al (2018) A mycorrhizal revolution. Curr Opin Plant Biol 44:1–6

    Article  CAS  PubMed  Google Scholar 

  • Hurek T, Reinhold-Hurek B et al (1994) Root colonization and systemic spreading of Azoarcus sp. strain BH72 in grasses. J Bacteriol 176(7):1913–1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irizarry I, White JF (2017) Application of bacteria from non-cultivated plants to promote growth, alter root architecture and alleviate salt stress of cotton. J Appl Microbiol 122(4):1110–1120

    Article  CAS  PubMed  Google Scholar 

  • Ji SH, Gururani MA et al (2014) Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiol Res 169(1):83–98

    Article  CAS  PubMed  Google Scholar 

  • Johnston-Monje D, Raizada MN (2011) Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology. PLoS One 6(6):e20396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston-Monje D, Lundberg DS et al (2016) Bacterial populations in juvenile maize rhizospheres originate from both seed and soil. Plant Soil 405(1–2):337–355

    Article  CAS  Google Scholar 

  • Kaga H, Mano H, Tanaka F, Watanabe A, Kaneko S, Morisaki H (2009) Rice seeds as sources of endophytic bacteria. Microbes Environ 24(2):154–162

    Article  PubMed  Google Scholar 

  • Kandel SL, Joubert PM et al (2017) Bacterial endophyte colonization and distribution within plants. Microorganisms 5(4):77

    Article  PubMed Central  CAS  Google Scholar 

  • Kim J, Kim JG et al (2004) Quorum sensing and the LysR-type transcriptional activator ToxR regulate toxoflavin biosynthesis and transport in Burkholderia glumae. Mol Microbiol 54(4):921–934

    Article  CAS  PubMed  Google Scholar 

  • Kong CH, Wang P et al (2008) Impact of allelochemical exuded from allelopathic rice on soil microbial community. Soil Biol Biochem 40(7):1862–1869

    Article  CAS  Google Scholar 

  • Krishnan P, Bhat R et al (2012) Isolation and functional characterization of bacterial endophytes from Carica papaya fruits. J Appl Microbiol 113(2):308–317

    Article  CAS  PubMed  Google Scholar 

  • Kuldau G, Bacon C (2008) Clavicipitaceous endophytes: their ability to enhance resistance of grasses to multiple stresses. Biol Control 46(1):57–71

    Article  Google Scholar 

  • Lareen A, Burton F, Schäfer P (2016) Plant root-microbe communication in shaping root microbiomes. Plant Mol Biol 90:575–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larran S, Simon MR et al (2016) Endophytes from wheat as biocontrol agents against tan spot disease. Biol Control 92:17–23

    Article  Google Scholar 

  • Li HY, Wei DQ et al (2012) Endophytes and their role in phytoremediation. Fungal Divers 54(1):11–18

    Article  Google Scholar 

  • Liu Y, Zuo S et al (2012) Study on diversity of endophytic bacterial communities in seeds of hybrid maize and their parental lines. Arch Microbiol 194(12):1001–1012

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Zuo S et al (2013) Investigation on diversity and population succession dynamics of endophytic bacteria from seeds of maize (Zea mays L., Nongda108) at different growth stages. Ann Microbiol 63(1):71–79

    Article  Google Scholar 

  • Loaces I, Ferrando L et al (2011) Dynamics, diversity and function of endophytic siderophore-producing bacteria in rice. Microb Ecol 61(3):606–618

    Article  PubMed  Google Scholar 

  • Lodewyckx C, Vangronsveld J et al (2002) Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21(6):583–606

    Article  Google Scholar 

  • Loganathan P, Nair S (2003) Crop-specific endophytic colonization by a novel, salt-tolerant, N2-fixing and phosphate-solubilizing Gluconacetobacter sp. from wild rice. Biotechnol Lett 25(6):497–501

    Article  CAS  PubMed  Google Scholar 

  • Lopez DC (2015) Ecological roles of two entomopathogenic endophytes: Beauveria bassiana and Purpureocillium lilacinum in cultivated cotton. Texas A&M University

    Google Scholar 

  • Lucas JA, García-Villaraco A et al (2013) Structural and functional study in the rhizosphere of Oryza sativa L. plants growing under biotic and abiotic stress. J Appl Microbiol 115(1):218–235

    Article  CAS  PubMed  Google Scholar 

  • Luo S, Xu T et al (2012) Endophyte-assisted promotion of biomass production and metal-uptake of energy crop sweet sorghum by plant-growth-promoting endophyte Bacillus sp. SLS18. Appl Microbiol Biotechnol 93(4):1745–1753

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Prasad MNV et al (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29(2):248–258

    Article  CAS  PubMed  Google Scholar 

  • Mano H, Morisaki H (2008) Endophytic bacteria in the rice plant. Microbes Environ 23:109–117

    Article  PubMed  Google Scholar 

  • Mathan S (2016) Isolation of endophytic fungi from marine algae and its bioactivity. Int J Res Pharm Biomed Sci 4(1):45–49

    Google Scholar 

  • Menn FM, Easter JP et al (2008) Genetically engineered microorganisms and bioremediation, 2nd ed. Biotechnology Set, pp 441–463

    Google Scholar 

  • Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55(1):165–199

    Article  CAS  PubMed  Google Scholar 

  • Mitter B, Petric A et al (2013) Comparative genome analysis of Burkholderia phytofirmans PsJN reveals a wide spectrum of endophytic lifestyles based on interaction strategies with host plants. Front Plant Sci 4:120

    Article  PubMed  PubMed Central  Google Scholar 

  • Mukhopadhyay K, Garrison NK et al (1996) Identification and characterization of bacterial endophytes of rice. Mycopathologia 134(3):151–159

    Article  CAS  PubMed  Google Scholar 

  • Murphy BR, Doohan FM et al (2015) Fungal root endophytes of a wild barley species increase yield in a nutrient-stressed barley cultivar. Symbiosis 65(1):1–7

    Article  CAS  Google Scholar 

  • Nandakumar R, Babu S et al (2001) Induction of systemic resistance in rice against sheath blight disease by Pseudomonas fluorescens. Soil Biol Biochem 33(4–5):603–612

    Article  CAS  Google Scholar 

  • Narula S, Anand RC et al (2013) Beneficial traits of endophytic bacteria from field pea nodules and plant growth promotion of field pea. J Food Legumes 26(3 and 4):73–79

    Google Scholar 

  • Newman LA, Reynolds CM (2005) Bacteria and phytoremediation: new uses for endophytic bacteria in plants. Trends Biotechnol 23(1):6–8

    Article  CAS  PubMed  Google Scholar 

  • Okunishi S, Sako K et al (2005) Bacterial flora of endophytes in the maturing seed of cultivated rice (Oryza sativa). Microbes Environ 20(3):168–177

    Article  Google Scholar 

  • Palumbo JD, Yuen GY et al (2005) Mutagenesis of β-1,3-glucanase genes in Lysobacter enzymogenes strain C3 results in reduced biological control activity toward Bipolaris leaf spot of tall fescue and Pythium damping-off of sugar beet. Phytopathology 95(6):701–707

    Article  CAS  PubMed  Google Scholar 

  • Paungfoo-Lonhienne C, Rentsch D et al (2010) Turning the table: plants consume microbes as a source of nutrients. PLoS One 5:e11915

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perotti R (1926) On the limits of biological enquiry in soil science. Proc Int Soc Soil Sci 2:146–161

    Google Scholar 

  • Pirttilä AM, Laukkanen H et al (2000) Detection of intracellular bacteria in the buds of Scotch pine (Pinus sylvestris L.) by in situ hybridization. Appl Environ Microbiol 66(7):3073–3077

    Article  PubMed  PubMed Central  Google Scholar 

  • Pirttilä AM, Pospiech H et al (2003) Two endophytic fungi in different tissues of Scots pine buds (Pinus sylvestris L.). Microb Ecol 45(1):53–62

    Article  PubMed  CAS  Google Scholar 

  • Pleban S, Chernin L et al (1997) Chitinolytic activity of an endophytic strain of Bacillus cereus. Lett Appl Microbiol 25(4):284–288

    Article  CAS  PubMed  Google Scholar 

  • Prieto KR, Echaide-Aquino F et al (2017) Endophytic bacteria and rare earth elements; promising candidates for nutrient use efficiency in plants. In: Plant macronutrient use efficiency: molecular and genomic perspectives in crop plants. Elsevier, pp 285–306

    Google Scholar 

  • Reshma P, Naik MK et al (2018) Induced systemic resistance by 2,4-diacetylphloroglucinol positive fluorescent Pseudomonas strains against rice sheath blight. Indian J Exp Biol 56(3):207–212

    CAS  Google Scholar 

  • Ringelberg D, Foley K et al (2012) Bacterial endophyte communities of two wheatgrass varieties following propagation in different growing media. Can J Microbiol 58(1):67–80

    Article  CAS  PubMed  Google Scholar 

  • Rojas GJ et al (2016) Infection with a shoot-specific fungal endophyte (Epichloë) alters tall fescue soil microbial communities. Microb Ecol 72(1):197–206

    Article  CAS  PubMed  Google Scholar 

  • Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant-Microbe Interact 19(8):827–837

    Article  CAS  PubMed  Google Scholar 

  • Ruiza D, Agaras B et al (2011) Characterization and screening of plant probiotic traits of bacteria isolated from rice seeds cultivated in Argentina. J Microbiol 49(6):902–912

    Article  CAS  PubMed  Google Scholar 

  • Rutherford ST, Bassler BL (2012) Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med 2(11):a012427

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Salisbury FB (1994) The role of plant hormones. Plant-environment interactions. Dekker, New York, pp 39–81

    Google Scholar 

  • Saraf M, Pandya U et al (2014) Role of allelochemicals in plant growth promoting rhizobacteria for biocontrol of phytopathogens. Microbiol Res 169(1):18–29

    Article  CAS  PubMed  Google Scholar 

  • Schulz B, Römmert AK et al (1999) The endophyte-host interaction: a balanced antagonism? Mycol Res 103(10):1275–1283

    Article  Google Scholar 

  • Shahzad R, Waqas M et al (2016) Seed-borne endophytic Bacillus amyloliquefaciens RWL-1 produces gibberellins and regulates endogenous phytohormones of Oryza sativa. Plant Physiol Biochem 106:236–243

    Article  CAS  PubMed  Google Scholar 

  • Shearin ZR, Filipek M et al (2018) Fungal endophytes from seeds of invasive, non-native Phragmites australis and their potential role in germination and seedling growth. Plant Soil 422(1–2):183–194

    Article  CAS  Google Scholar 

  • Shehata HR, Ettinger CL et al (2016) Genes required for the anti-fungal activity of a bacterial endophyte isolated from a corn landrace grown continuously by subsistence farmers since 1000 BC. Front Microbiol 7:1548

    Article  PubMed  PubMed Central  Google Scholar 

  • Shields MS, Reagin MJ et al (1995) TOM, a new aromatic degradative plasmid from Burkholderia (Pseudomonas) cepacia G4. Appl Environ Microbiol 61(4):1352–1356

    CAS  PubMed  PubMed Central  Google Scholar 

  • Siciliano SD, Fortin N et al (2001) Selection of specific endophytic bacterial genotypes by plants in response to soil contamination. Appl Environ Microbiol 67(6):2469–2475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevenson FJ, Cole MA (1999) Cycles of soils: carbon, nitrogen, phosphorus, sulfur, micronutrients. Wiley, New York

    Google Scholar 

  • Sun Y, O’Riordan MX (2013) Regulation of bacterial pathogenesis by intestinal short-chain fatty acids. Adv Appl Microbiol 85:93–118

    Article  PubMed  PubMed Central  Google Scholar 

  • Sziderics AH, Rasche F et al (2007) Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum L.). Can J Microbiol 53(11):1195–1202

    Article  CAS  PubMed  Google Scholar 

  • Tholozan JL, Cappelier JM et al (1999) Physiological characterization of viable-but-nonculturable Campylobacter jejuni cells. Appl Environ Microbiol 65(3):1110–1116

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tramontano WA, Scanlon C (1996) Cell cycle inhibition by butyrate in legume root meristems. Phytochemistry 41:85–88

    Article  CAS  Google Scholar 

  • Truyens S, Weyens N et al (2015) Bacterial seed endophytes: genera, vertical transmission and interaction with plants. Environ Microbiol 7(1):40–50

    Article  Google Scholar 

  • Tsurumaru H, Okubo T et al (2015) Metagenomic analysis of the bacterial community associated with the taproot of sugar beet. Microbes Environ 30(1):63–69

    Article  PubMed  PubMed Central  Google Scholar 

  • Vallad GE, Goodman RM (2004) Systemic acquired resistance and induced systemic resistance in conventional agriculture. J Trop Crop Sci 44(6):1920–1934

    Article  Google Scholar 

  • Van Loon LC, Bakker PAHM et al (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36(1):453–483

    Article  PubMed  Google Scholar 

  • Verma SC, Ladha JK et al (2001) Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. J Biotechnol 91(2–3):127–141

    Article  CAS  PubMed  Google Scholar 

  • Verma SK, Gond SK et al (2017a) Fungal endophytes representing diverse habitats and their role in plant protection. In: Developments in fungal biology and applied mycology. Springer, Singapore, pp 135–157

    Google Scholar 

  • Verma SK, Kingsley K et al (2017b) Seed vectored endophytic bacteria modulate development of rice seedlings. J Appl Microbiol 122(6):1680–1691

    Article  CAS  PubMed  Google Scholar 

  • Verma SK, White JF (2018) Indigenous endophytic seed bacteria promote seedling development and defend against fungal disease in browntop millet (L.). J Appl Microbiol 124(3):764–778

    Article  CAS  PubMed  Google Scholar 

  • Verma SK, Kingsley K et al (2018) Bacterial endophytes from rice cut grass (Leersia oryzoides L.) increase growth, promote root gravitropic response, stimulate root hair formation, and protect rice seedlings from disease. Plant Soil 422(1–2):223–238

    Article  CAS  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255(2):571–586

    Article  CAS  Google Scholar 

  • Vujanovic V, Germida JJ (2017) Seed endosymbiosis: a vital relationship in providing prenatal care to plants. Can J Plant Sci 97(6):972–981

    Google Scholar 

  • Walitang DI, Kim K et al (2017) Characterizing endophytic competence and plant growth promotion of bacterial endophytes inhabiting the seed endosphere of Rice. BMC Microbiol 17(1):209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • White JF (2017) Syntrophic imbalance and the etiology of bacterial endoparasitism diseases. Med Hypotheses 107:14–15

    Article  PubMed  Google Scholar 

  • White JC, Wang X et al (2003) Subspecies-level variation in the phytoextraction of weathered p,p′-DDE by Cucurbita pepo. Environ Sci Technol 37(19):4368–4373

    Article  CAS  PubMed  Google Scholar 

  • White JF, Chen Q et al (2015) Collaboration between grass seedlings and rhizobacteria to scavenge organic nitrogen in soils. AoB Plants 7

    Google Scholar 

  • White J F, Kingsley K L et al (2018) Reactive oxygen defense against cellular endoparasites and the origin of eukaryotes. Transformative paleobotany: papers to commemorate the life and legacy of Thomas N. Taylor. Elsevier, Amsterdam

    Google Scholar 

  • White JF, Torres MS et al (2019) Evidence for widespread microbivory of endophytic bacteria in roots of vascular plants through oxidative degradation in root cell periplasmic spaces. In: PGPR amelioration in sustainable agriculture: food security and environmental management. Elsevier, London

    Google Scholar 

  • Wijesooriya WADK, Deshappriya N (2016) An inoculum of endophytic fungi for improved growth of a traditional rice variety in Sri Lanka. Trop Plant Res 3(3):470–480

    Article  Google Scholar 

  • Williams P, Cámara M (2009) Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol 12(2):182–191

    Article  CAS  PubMed  Google Scholar 

  • Wilson D (1995) Endophyte: the evolution of a term, and clarification of its use and definition. Oikos 73:274–276

    Article  Google Scholar 

  • Yan Z, Reddy MS et al (2002) Induced systemic protection against tomato late blight elicited by plant growth-promoting rhizobacteria. Phytopathology 92(12):1329–1333

    Article  CAS  PubMed  Google Scholar 

  • Yumlembam RA, Borkar SG (2014) Assessment of antibacterial properties of medicinal plants having bacterial leaf endophytes against plant pathogenic Xanthomonads. Indian Phytopathol 67(4):353–357

    Google Scholar 

  • Zhang T, Yao YF (2015) Endophytic fungal communities associated with vascular plants in the high arctic zone are highly diverse and host-plant specific. PLoS One 10(6):e0130051

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zúñiga A, Poupin MJ et al (2013) Quorum sensing and indole-3-acetic acid degradation play a role in colonization and plant growth promotion of Arabidopsis thaliana by Burkholderia phytofirmans PsJN. Mol Plant-Microbe Interact 26(5):546–553

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors are grateful to the Department of Plant Biology, Rutgers University, NJ, for research facilities. SKV thanks to UGC, India, for providing a Raman Post Doctoral Fellowship No. F 5-11/2016(IC) for the year 2016–2017 to work in the USA and support as grant, Project-UGC-BSR startup-M14-26. The SKV and RNK are also grateful to the Head and Coordinator of CAS and DST-FIST and PURSE of Botany, BHU, Varanasi, for providing facilities and leave to pursue endophyte research. The authors are also thankful for support from the John E. and Christina C. Craighead Foundation, USDA-NIFA Multistate Project W3147, and the New Jersey Agricultural Experiment Station.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pal, G., Kumar, K., Verma, A., White, J.F., Verma, S.K. (2019). Functional Roles of Seed-Inhabiting Endophytes of Rice. In: Verma, S., White, Jr, J. (eds) Seed Endophytes. Springer, Cham. https://doi.org/10.1007/978-3-030-10504-4_11

Download citation

Publish with us

Policies and ethics