Skip to main content

Fusarium: Biodiversity, Ecological Significances, and Industrial Applications

  • Chapter
  • First Online:

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Since Link introduced genus Fusarium in 1809, the genus encompasses a diverse array of species of significance for being devastating plant pathogens that often produce a wide range of secondary metabolites and attracted an immense interest. The association of some of these metabolites with cellular toxicity, effects on growth and development of animals, and cancer in humans and domesticated animals is of particular interest to agriculture and food safety. The taxonomic history of Fusarium species has been reviewed in great detail elsewhere. The genus currently contains nearly less than 200 accepted species, and its economic and historical importance makes it remain at center stage in future discussions about nomenclature and mycological diversity. Therefore, together with its ubiquitous nature, these species are of great significant impacts on ecosystems, agriculture, food production, biotechnology, and human and animal health. The aim of this chapter is to give an overview of the studies aimed at the investigation of Fusarium biodiversity in a wide variety of different ecological habitats, ecological significances, and industrial applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abd-Allah EF, Hashem A (2006) Seed mycoflora of Lens esculenta and their biocontrol by chitosan. Phytoparasitica 34(2):213–218

    Google Scholar 

  • Abd-El-Aziz FMR (1970) Studies on the damping-off root-rot diseases of soybean and lucerne in UAR M. Sc. Thesis Fac. Agric., Alexandria University

    Google Scholar 

  • Abdel-Fattah HM (1973) Ecological studies on desert fungi in Egypt. Ph. D. Thesis. Bot. Dept., Faculty of Science, Assiut University

    Google Scholar 

  • Abdel-Fattah HM, Moubasher AH, Abdel-Hafez SI (1977a) Studies on mycoflora of salt marshes in Egypt. 1-Sugar fungi. Myopathologia 61(1):19–26

    Google Scholar 

  • Abdel-Fattah HM, Moubasher AH, Abdel-Hafez SI (1977b) Fungus flora of root and leaf surface of broad bean cultivated in Oases, Egypt. Natur Monspeliensis Serie Bot Fac 27:167–177

    Google Scholar 

  • Abdel-Hafez SII (1974) Ecological studies on Egyptian soil fungi. Ph. D. Thesis. Bot Dept, Faculty of Science, Assiut University, Egypt

    Google Scholar 

  • Abdel-Hafez AI (1981) Studies on the genus Fusarium in Egypt. M. Sc. Thesis. Fac Sci, Assiut University

    Google Scholar 

  • Abdel-Hafez AII (1988) Mycoflora of broad bean, chickpea and lentil seed in Egypt. Cryptogam Mycol 9:335–343

    Google Scholar 

  • Abd-Elhafez WAM (2004) Some mycological, phytopathological and physiological studies on mycobiota of selected newly reclaimed soils in Assiut Governorate, Egypt. M. Sc. Thesis, Faculty of Science, Assuit University, Egypt, p 238

    Google Scholar 

  • Abdel-Hafez SII, Abdel-Kader MIA (1980) Cellulose-decomposing fungi of barley grains in Egypt. Mycopathologia 70(2):77–82

    Google Scholar 

  • Abdel-Hafez SII, El-Kady IA, Mazen MB, El-Maghraby OMO (1987) Mycoflora and trichothecene toxins of paddy grains from Egypt. Mycopathologia 100:103–112

    Google Scholar 

  • Abdel-Hafez SII, Mohawed SM, El-Said AM (1989) Seasonal fluctuations of soil fungi of Wadi Qena at eastern desert of Egypt. Mycologica 25:113–125

    Google Scholar 

  • Abdel-Hafez SI, Mazen MB, Shaban GM (1990a) Seasonal fluctuation of rhizosphere and rhizoplane fungi of Egyptian wheat plant. Bull Fac Sci Assiut Univ 19(1-D):173–184

    Google Scholar 

  • Abdel-Hafez SII, Moubasher AH, Barakat A (1990b) Keratinophilic fungi and other moulds associated with air-dust particles from Egypt. Folia Microbiol 35:311–325

    Google Scholar 

  • Abdel-Hafez SII, El-Kady I, Mazen M, El-Maghraby O (1992) Effect of temperature and moisture content on germination capacity and paddy grain-borne fungi from Egypt. Pure Sci Eng 1:91–105

    Google Scholar 

  • Abdel-Hafez SII, Moubasher AH, Barakat A (1993) Seasonal variations of fungi of outdoor air and sedimented dust at Assiut region, Upper Egypt. Grana 32(2):115–121

    Google Scholar 

  • Abdel-Hafez SII, El-Said AHM, Gherbawy YAMH (1995) Seasonal fluctuation of soil and root surface fungi of sugarcane (Saccharum officinarum L.) in Egypt. Bull Fac Sci, Assiut Univ 24(2-D):131–151

    Google Scholar 

  • Abdel-Hafez SII, Moharram AM, Abdel-Sater MA (2000) Monthly variations in the Mycobiota of wheat fields in El-Kharga Oasis, Western Desert, Egypt. Bull Fac Sci, Assiut Univ 29(2-D):195–211

    Google Scholar 

  • Abdel-Hafez SII, El-Said AHM, Moharram AM, Saleem (2003) Effect of two insecticides (Sparkill and Tafaban) on incidence, growth and some enzymes production of fungi of maize plants in Upper Egypt. In: Proc. of the 8th Arab congress of plant protection, Omar Al-Mukhtar University, El-Beida, Libya

    Google Scholar 

  • Abdel-Hafez SII, Ismail MA, Nemmat AH, Nivien AN (2009) The diversity of Fusarium species in Egyptian soils, with 3 new record species. Assiut Univ J Bot, The First International Conference of Biological Sciences, Spec Publ No.1:129–147

    Google Scholar 

  • Abdel-Hafez SII, Ismail MA, Hussein NA, Abdel-Hameed NA (2012) Fusaria and other fungi taxa associated with rhizosphere and rhizoplane of lentil and sesame at different growth stages. Acta Mycol 47(1):35–48

    Google Scholar 

  • Abdel-Kader MM, Ashour AMA (1999) Biological control of cowpea root rot in solarized soil. Egypt. J Phytopathol 27:9–18

    Google Scholar 

  • Abdel-Kader MIA, Moubasher AH, Abdel-Hafez SII (1978) Selective effects of five pesticides on soil and cotton-rhizosphere and rhizoplane fungus flora. Mycopathologia 66:117–123

    Google Scholar 

  • Abdel-Kader MIA, Moubasher AH, Abdel-Hafez SII (1979) Survey of the mycoflora of barley grains in Egypt. Mycopathologia 68(3):143–147

    Google Scholar 

  • Abd-ElKader M, Abd-Elrazik A, Darweish F, Rushdi M (1978) Fungi causing Damping-off and root rot of lentil in Upper Egypt. Ass J Agric Sci 8(1):112–123

    Google Scholar 

  • Abdel-Mallek AY, El-Maraghy SSM, Hasan HAH (1993) Mycotoxin-producing potential of some Aspergillus, Penicillium and Fusarium isolates found on corn grains and sun-flower seeds in Egypt. J Islam Acad Sci 6(3):189–192

    Google Scholar 

  • Abdel-Monem AM (2000) Status of seed pathology and seed health testing in Egypt. Seed Sci Technol 28:533–547

    Google Scholar 

  • Abdel-Razik A, Darweish F, Rushdi M, Abd-El-Kader A (1976) Role of polysaccharides in pathogenesis of fungi inciting damping-off and root-rot of lentil. Assiut J Agri Sci 7(3):15–24

    Google Scholar 

  • Abdel-Sater MA, Hemida SK, Eraky SA, Nasser MM (1995) Distribution of fungi on two mite species and their habitats in Egypt. Folia Microbiol 40(3):304–313

    Google Scholar 

  • Abedi-Tizaki M, Sabbagh SK (2012) Morphological and molecular identification of Fusarium head blight isolates from wheat in north of Iran. Aust J Crop Sci 6(9):1356–1361

    Google Scholar 

  • Abildgren MP, Lund F, Thrane U, El Mholt S (1987) Czapek-Dox agar iprodione and dicloran as a selective medium for the isolation of Fusarium species. Microbiology 5:83–86

    Google Scholar 

  • Abu El-Souod SM (1974) Studies on fungus-air spora in Egypt. Ph. D. Thesis. Botany Department, Faculty of Science, Assiut University, Egypt, p 228

    Google Scholar 

  • Aditiya HB, Mahila TMI, Chong WT, Nur H, Sebayang AH (2016) Second generation bioethanol production:a critical review. Renew Sust Energ Rev 66:631–653. https://doi.org/10.1016/j.rser.2016.07.015

    Google Scholar 

  • Agarwal VK, Sinclair JB (1997) Principles of seed pathology, 2ed edn. CRC, Boca Raton, p 538

    Google Scholar 

  • Ahmed FAS (1978) Studies on Fusarium basal rot disease of onion. M. Sc. Thesis. Fac. Agric.

    Google Scholar 

  • Akilandeswari P, Pradeep BV (2016) Exploration of industrially important pigments from soil fungi. Appl Microbiol Biotechnol 100:1631–1643. https://doi.org/10.1007/s00253-015-7231-8

    Google Scholar 

  • Alastruey-Izquierdo A, Cuenca-Estrella M, Monz’on A, Mellado E, Rodr’ıguez-Tudela JL (2008) Antifungal susceptibility profile of clinical Fusarium spp. isolates identified by molecular methods. J Antimicrob Chemother 61:805–809

    Google Scholar 

  • Alabouvette C, Olivain C, Migheli Q, and Steinberg C (2009) Microbiological control of soil-borne phytopathogenic fungi with special emphasis on wilt-inducing Fusarium oxysporum. New Phytol 184:529–544

    Google Scholar 

  • Alfenore S, Molina-Jouve C (2016) Current status and future prospects of conversion of lignocellulosic resources to biofuels using yeast and bacteria. Process Biochem. https://doi.org/10.1016/j.procbio.2016.07.028

  • Ali SS, Vidhale NN (2013) Protease production by Fusarium oxysporum in solid-state fermentation using rice bran. Am J Microbiol Res 1:45–47. https://doi.org/10.12691/ajmr-1-3-2

    Google Scholar 

  • Ali M, Salama A, Ali T (1973) Studies on the air fungal flora of Egypt. I. Effect of some environmental factors on the frequency of occurrence. Egypt J Microbiol 8:113–124

    Google Scholar 

  • Ali MI, Abu-Zinada AH, El-Mashharawi Z (1977) On the fungal flora of Saudi Arabia II. Seasonal fluctuation of fungi in the rhizosphere of some plants. Bull Fac Sci Riyad-Univ 8:203–214

    Google Scholar 

  • Almeida MN, Guimarães VM, Falkoski DL, Paes GBT, Ribeiro JI Jr, Visser EM, Alfenas RF, Pereira OL, Rezende ST (2014) Optimization of endoglucanase and xylanase activities from Fusarium verticillioides for simultaneous saccharification and fermentation of sugarcane bagasse. Appl Biochem Biotechnol 172:1332–1346. https://doi.org/10.1007/s12010-013-0572-9

  • Aly AA (1978) Studies on flax caused by Fusarium oxysporum f. sp. lini. M. Sc. Thesis. Fac. Agric., Al-Azhar University

    Google Scholar 

  • Amoah J, Ho S, Hama S, Yoshida A, Nakanishi A, Hasunuma T, Ogino C, Kondo A (2016) Converting oils high in phospholipids to biodiesel using immobilized Aspergillus oryzae whole-cell biocatalysts expressing Fusarium heterosporum lipase. Biochem Eng J 105:10–15. https://doi.org/10.1016/j.bej.2015.08.007

    Google Scholar 

  • Anasontzis GE, Christakopoulos P (2014) Challenges in ethanol production with Fusarium oxysporum through consolidated bioprocessing. Bioengineered 5:393–395. https://doi.org/10.4161/bioe.36328

    Google Scholar 

  • Andre C, Charmoille L (1999) Fusarium isolate and lipases, cutinases and enzyme compositions derived therefrom. USA US5990069A

    Google Scholar 

  • Andrews S, Pitt J (1986) Selective medium for isolation of Fusarium species and dematiaceous hyphomycetes from cereals. Appl Environ Microbiol 51:1235–1238

    Google Scholar 

  • Aoki T, O’Donnell K (1999) Morphological and molecular characterization of Fusarium pseudograminearum sp. nov., formerly recognized as the group 1 population of F. graminearum and PCR primers for its identification. Mycologia 91:597–609

    Google Scholar 

  • Aoki T, O’Donnell K, Ichikawa K (2001) Fusarium fractiflexum sp. nov. and two other species within the Gibberella fujikuroi species complex recently discovered in Japan that form aerial conidia in false heads. Mycoscience 42:461–478

    Google Scholar 

  • Arafa MK, Mohamed MS, Amein AM, Abd-Elrazik A (1986) Effect of certain crops preceding cumin on incidence of cumin Fusarium wilt. Assiut J Agr Sci 17(1):16–26

    Google Scholar 

  • Arianayagam S, Jayalakshmi P, Soo-Hoo TS (1986) Pulmonary aspergilloma. Case reports from Malaysia. Mycopathologica 93(3):151–3

    Google Scholar 

  • Ariyarathna IR, Karunarathne DN (2016) Microencapsulation stabilizes curcumin for efficient delivery in food applications. Food Packag Shelf Life 10:79–86. https://doi.org/10.1016/j.fpsl.2016.10.005

    Google Scholar 

  • Arnstein HRV, Cook AH, Lacey MS (1946) An antibacterial pigment from F. javanicum. Nature 157:333–337

    Google Scholar 

  • Arndt B, Studt L, Wiemann P, Osmanov H, Kleigrewe K, Köhler J, et al. (2015) Genetic engineering, high resolution mass spectrometry and nuclear magnetic resonance spectroscopy elucidate the bikaverin biosynthetic pathway in Fusarium fujikuroi. Fungal Genet Biol 84:26–36. https://doi.org/10.1016/j.fgb.2015.09.006.

  • Ashour WE, Morsey AA, Ali MDH, Diab MMM (1973) Effect of temperature, moisture and aeration on the development of basal rot of onion during storage. Agric Res Rev 51:163

    Google Scholar 

  • Ashley JN, Hobbs BC, Raistrick H (1937) LV. Studies in the biochemistry of micro-organisms. LIII. The crystalline coloring matters of Fusarium culmorum (W. G. Smith) Sacc. and related forms. Biochemical J 31:385–397

    Google Scholar 

  • Asiedu JJ (1989) Processing tropical crops. A technological approach. The Macmillan Press, London and Basingstoke, p 266

    Google Scholar 

  • Aziz NH, Ferial ME, Azza AMS, Souzan MR (2007) Control of Fusarium moulds and fumonisin B1 in seeds by gamma-irradiation. Food Control 18(11):1337–1342

    Google Scholar 

  • Backhouse D, Burgess LW, Summerell BA (2001) Biogeography of Fusarium. In: Summerell BA, Leslie JF, Backhouse D, Bryden WL, Burgess LW (eds) Fusarium Paul E. Nelson Memorial Symposium. American Phytopathological Society Press, St. Paul, MN, pp 122–137

    Google Scholar 

  • Baeyens J, Kang Q, Appels L, Dewil R, Lv Y, Tan T (2015) Challenges and opportunities in improving the production of bio-ethanol. Prog Energy Combust Sci 47:60–88. https://doi.org/10.1016/j.pecs.2014.10.003

    Google Scholar 

  • Bagy MMK (1979) Some ecological studies on Egyptian soil fungi. M. Sc. Thesis. Faculty of Science, Assiut University

    Google Scholar 

  • Bai GH, Desjardins AE, Plattner RD (2002) Deoxynivalenol-nonproducing Fusarium graminearum causes initial infection, but does not cause disease spread in wheat spikes. Mycopathologia 153:91–98

    Google Scholar 

  • Baker RA, Tatum JH, Nemec S Jr (1990) Antimicrobial activity of naphthoquinones from fusaria. Mycopathologia 111:9–15. https://doi.org/10.1007/bf02277294

    Google Scholar 

  • Barros DPC, Azevedo AM, Cabral JMS, Fonseca LP (2012) Optimization of flavor esters synthesis by Fusarium solani pisi cutinase. J Food Biochem 36:275–284. https://doi.org/10.1111/j.1745-4514.2010.00535.x

    Google Scholar 

  • Behera SS, Ray RC (2016) Solid state fermentation for production of microbial cellulases: recent advances and improvement strategies. Int J Biol Macromol 86:656–669. https://doi.org/10.1016/j.ijbiomac.2015.10.090

    Google Scholar 

  • Bérdy J (2005) Bioactive microbial metabolites. J Antibiot 58:1–26. https://doi.org/10.10338/já.2005.1

    Google Scholar 

  • Berger RG (2009) Biotechnology of flavours–the next generation. Biotechnol Lett 31:1651–1659. https://doi.org/10.1007/s10529-009-0083-5

    Google Scholar 

  • Bicas JL, Silva WS (2013a) Process of production and deriving pigment application of the fungus Fusarium oxysporum Brazil: BR102013015305

    Google Scholar 

  • Bicas JL, Silva WS (2013b) Processes of dyeing of fabrics and plastics using fungous pigments Brazil:BR102013027036

    Google Scholar 

  • Bicas J, Barros F, Wagner R (2008) Optimization of R-(+)-α-terpineol production by the biotransformation of R-(+)-limonene. J Ind Microbiol Biotechnol 35:1061–1070. https://doi.org/10.1007/s10295-008-0383-0

    Google Scholar 

  • Bicas JL, Dionísio AP, Pastore GM (2009) Bio-oxidation of terpenes: an approach for the flavor industry. Chem Rev 109:4518–4531. https://doi.org/10.1021/cr800190y

    Google Scholar 

  • Bicas J, de Quadros C, Néri-Numa I, Pastore G (2010a) Integrated process for co-production of alkaline lipase and R-(+)-α-terpineol by Fusarium oxysporum. Food Chem 120:452–456. https://doi.org/10.1016/j.foodchem.2009.10.037

    Google Scholar 

  • Bicas JL, Silva C, Dionísio AP, Pastore M (2010b) Biotechnological production of bioflavors and functional sugars. Ciênc Tecnol Aliment 30:7–18

    Google Scholar 

  • Boonla O, Kukongviriyapan U, Pakdeechote P, Kukongviriyapan V, Pannangpetch P, Prachaney P, Greenwald SE (2014) Curcumin improves endothelial dysfunction and vascular remodelling in 2K-1C hypertensive rats by raising nitric oxide availability and reducing oxidative stress. Nitric Oxide 42:44–53. https://doi.org/10.1016/j.niox.2014.09.001

    Google Scholar 

  • Boonyapranai K, Tungpradit R, Hieochaiphant S (2008) Optimization of submerged culture for the production of naphthoquinones pigment by Fusarium verticillioides. Chiang Mai J Sci 35:457–466

    Google Scholar 

  • Booth C (1971) The genus Fusarium. Commonwealth Mycological Institute, Kew, Surrey

    Google Scholar 

  • Booth C (1975) The present status of Fusarium taxonomy. Annu Rev Phytopathol 13:83–93

    Google Scholar 

  • Brakhage AA (2013) Regulation of fungal secondary metabolism. Natl Rev 11:21–32. https://doi.org/10.3389/fmicb.2014.00656

    Google Scholar 

  • Brakhage AA, Schroeckh V (2011) Fungal secondary metabolites—strategies to activate silent gene clusters. Fungal Genet Biol 48:15–22. https://doi.org/10.1016/j.fgb.2010.04.004

    Google Scholar 

  • Britiz H, Steenkamp ET, Coutinho TA, Wingfield DD, Marasas WFO, Wingfield MJ (2002) Two new species of Fusarium section Liseola associated with mango malformation. Mycologia 94:722–730

    Google Scholar 

  • Brown TR (2015) A techno-economic review of thermochemical cellulosic biofuel pathways. Bioresour Technol 178:166–176. https://doi.org/10.1016/j.biortech.2014.09.053

    Google Scholar 

  • Burdock GA (2010) Fenaroli’s handbook of flavor ingredients, sixth. CRC Press, Boca Raton

    Google Scholar 

  • Campbell CL, Neher DA (1996) Principles and practice of managing soilborne plant pathogens. APs Press, San. Paul, MN, pp 20–49

    Google Scholar 

  • Chabasse D, De Gentile L, Bouchara JP (1989) Pathogenicity of some Chrysosporium species isolated in France. Mycopathologia 106:171–177

    Google Scholar 

  • Chang DC, Grant GB, O’Donnell K, Wannemuehler KA, Noble-Wang J, Rao CY et al (2006) Multistate outbreak of Fusarium keratitis associated with use of a contact lens solution. JAMA 296:953–963. https://doi.org/10.1001/jama.296.8.953

  • Chen Y-L, Mao W-J, Tao H-W, Zhu W-M, Yan M-X, Liu X, Guo T-T, Guo T (2015) Preparation and characterization of a novel extracellular polysaccharide with antioxidant activity, from the mangrove-associated fungus Fusarium oxysporum. Mar Biotechnol 17:219–228

    Google Scholar 

  • Chhaya U, Gupte A (2013) Effect of different cultivation conditions and inducers on the production of laccase by the litter-dwelling fungal isolate Fusarium incarnatum LD-3 under solid substrate fermentation. Ann Microbiol 63:215–223

    Google Scholar 

  • Christakopoulos P, Macris BJ, Kekos D (1989) Direct fermentation of cellulose to ethanol by Fusarium oxysporum. Enzyme Microb Technol II:236–239

    Google Scholar 

  • Christakopoulos P, Tzalas B, Mamma D, Stamatis H, Liadakis GN, Tzia C, Kekos D, Kolisis FN, Macris BJ (1998) Production of an esterase from Fusarium oxysporum catalysing transesterification reactions in organic solvents. Process Biochem 33:729–733. https://doi.org/10.1016/S0032-9592(98)00039-9

    Google Scholar 

  • Davey CB, Papavzas GC (1960) Effect of decomposing organic soil amendments and nitrogen on fungi in soil and bean rhizosphere. Trans Int Cong Soil Sci 7th Cong (Madison Wisc) Comm 111:551–557

    Google Scholar 

  • De Carvalho CCCR, da Fonseca MMR (2006) Biotransformation of terpenes. Biotechnol Adv 24:134–142. https://doi.org/10.1016/j.biotechadv.2005.08.004

    Google Scholar 

  • De Castro RJS, Sato HH (2013) Synergistic effects of agroindustrial wastes on simultaneous production of protease and α-amylase under solid state fermentation using a simplex centroid mixture design. Ind Crop Prod 49:813–821. https://doi.org/10.1016/j.indcrop.2013.07.002

    Google Scholar 

  • van der Schaft PH, ter BN, van den Bosch S, Cohen AM (1992) Fedbatch production of 2-heptanone by Fusarium poae. Appl Microbiol Biotechnol 36:709–711. https://doi.org/10.1007/bf00172179

    Google Scholar 

  • Deshmukh RR, Vidhale NN (2015) Effect of pH on the production of protease by Fusarium oxysporum using agroindustrial waste. Biosci Biotech Res Comm 8:78–83

    Google Scholar 

  • Deshmukh R, Mathew A, Purohit HJ (2014) Characterization of antibacterial activity of bikaverin from Fusarium sp. HKF15. J Biosci Bioeng 117:443–448. https://doi.org/10.1016/j.jbiosc.2013.09.017

    Google Scholar 

  • Desjardins AE, Proctor RH, Bai GH, McCormick SP, Shaner G et al (1996) Reduced virulence of trichothecene-nonproducing mutants of Gibberella zeae in wheat field tests. Mol Plant-Microbe Interact 9:775–781

    Google Scholar 

  • Desmond OJ, Manners JM, Stephens AE, Maclean DJ, Schenk PM et al (2008) The Fusarium mycotoxins deoxynivalenol elicits hydrogen peroxide production, programmed cell death and defence responses in wheat. Mol Plant Pathol 9:435–445

    Google Scholar 

  • Dhake KP, Thakare DD, Bhanage BM (2013) Lipase: a potential biocatalyst for the synthesis of valuable flavour and fragrance ester compounds. Flavour Fragr J 28:71–83. https://doi.org/10.1002/ffj.3140

    Google Scholar 

  • Dhoro M (2010) Identification and differentiation of Fusarium species using selected molecular methods. Master of Philosophy, Department of Biochemistry, University of Zimbabwe

    Google Scholar 

  • Ding L, Dahse HM, Hertweck C (2012) Cytotoxic alkaloids from Fusarium incarnatum associated with the mangrove tree Aegiceras corniculatum. J Nat Prod 75:617–621. https://doi.org/10.1021/np2008544

    Google Scholar 

  • Ding TZ, Cai L, Dong JW (2016) Fusarium sp fermentation of Fusarium through a solid one creation of a new antimicrobials sambacide method China:CN106117293

    Google Scholar 

  • Dong JW, Cai L, Li XJ, Duan RT, Shu Y, Chen FY, Wang JP, Zhou H, Ding ZT (2016) Production of a new tetracyclic triterpene sulfate metabolite sambacide by solid-state cultivated Fusarium sambucinum B10.2 using potato as substrate. Bioresour Technol 218:1266–1270. https://doi.org/10.1016/j.biortech.2016.07.014

    Google Scholar 

  • Du L, Lou L (2009) PKS and NRPS release mechanisms. Nat Prod Rep 27:255–278. https://doi.org/10.1039/b912037h

    Google Scholar 

  • Dufossé L, Galaup P, Yaron A, Arad SM, Blanc P, Murthy KNC, Ravishankar GA (2005) Microorganisms and microalgae as sources of pigments for food use: a scientific oddity or an industrial reality? Trends Food Sci Technol 16:389–406. https://doi.org/10.1016/j.tifs.2005.02.006

    Google Scholar 

  • Duran N, Teixeira MFS, De Conti R, Esposito E (2002) Ecological friendly pigments from fungi. Crit Rev Food Sci Nutr 42:53–66. https://doi.org/10.1080/10408690290825457

    Google Scholar 

  • Dvorska JE, Surai PF, Speake BK, Sparks NHC (2001) Effect of the mycotoxin aurofusarin on the antioxidant composition and fatty acid profile of quail eggs. Br Poult Sci 42:643–649. https://doi.org/10.1080/00071660120088470

    Google Scholar 

  • Dvorska JE, Surai PF, Speake BK, Sparks NHC (2002) Antioxidant systems of the developing quail embryo are compromised by mycotoxin aurofusarin. Comp Biochem Physiol C Toxicol Pharmacol 131:197–205. https://doi.org/10.1016/s1532-0456(02)00006-6

    Google Scholar 

  • Edel-Hermann V, Gautheron N, Mounier A, Steinberg C (2015) Fusarium diversity in soil using a specific molecular approach and a cultural approach. J Microbiol Methods 111:64–71. https://doi.org/10.1016/j.mimet.2015.01.026

    Google Scholar 

  • El-Abyad MS, Ismail IK (1976) Seasonal variation of fungistasis in Egyptian soils. Egypt J Bot 19:63–75

    Google Scholar 

  • El-Bramawy MAS (2006) Inheritance of resistance to Fusarium wilt in some sesame crosses under field conditions. Plant Prot Sci 42(3):99–105

    Google Scholar 

  • El-Bramawy MASA, Abdel-Wahid OA (2009) Evaluation of resistance of selected sesame (Sesamum indicum) genotypes to Fusarium wilt disease caused by Fusarium oxysporum f.sp. sesami. Tunis J Plant Prot 4(1):29–39

    Google Scholar 

  • El-Bramawy MAS, OA A-W (2007) Identification of genetic resources for resistance to Fusarium wilt, charcoal root rot and Rhizoctonia root rot among sesame (Sesamum indicum L.) germ-plasm. Afr Crop Sci Conf Proc 8:1893–1900

    Google Scholar 

  • El-Bramawy MAS, Shaban WI (2007) Nature of gene action for yield, yield components and major diseases resistance in sesame (Sesamum indicum L.). J Agric Biol Sci 396:821–826

    Google Scholar 

  • El-Hissy FT, Abdel-Hafez SI, Abdel-Kader MI (1980) Rhizosphere fungi of five plants in Egypt. Z Allg Mikrobiol 20(3):177–184

    Google Scholar 

  • El-Kady A, Abdel-Hafez SII, El-Maraghy SS (1982) Contribution to the fungal flora of cereal grains in Egypt. Mycopathologia 77:103–109

    Google Scholar 

  • El-Maghraby OM, El-Kady IA, Soliman S (1995) Mycoflora and Fusarium toxins of three types of corn grains in Egypt with special reference to production of trichothecene-toxins. Microbiol Res 150(3):225–232

    Google Scholar 

  • El-Mohamedy RSR (2004) Control of Fusarium root rot disease on mandarin by soil amendment with Trichoderma harzianum grown on bagasse. J Agric Sci 29(1):83–95

    Google Scholar 

  • El-Mohamedy RSR, Abd Alla MA, Badiaa RI (2006) Soil amendment and seed bio-priming treatments as alternative fungicides for controlling root rot diseases on cowpea plants in Nobaria Province. Res J Agric Biol Sci 2(6):391–398

    Google Scholar 

  • El-Nagerabi SAF, Elshafie AE (2000) Incidence of seed-borne fungi and aflatoxins in Sudanese lentil seeds. Mycopathologia 149:151–156

    Google Scholar 

  • El-Said AHM, Abdel-Hafez SII (1995) Seasonal variation of fungi above banana fields in Qena, Upper Egypt. Cryptogam Mycol 16(2):101–109

    Google Scholar 

  • Embaby EM, Abdel-Galil MM (2006) Seed borne fungi and mycotoxins associated with some legume seeds in Egypt. J Appl Sci Res 2(11):1064–1071

    Google Scholar 

  • Fandohan P, Gnonlonfin B, Hell K, Marssas WFO, Wingfield MJ (2005) Natural occurrence of Fusarium and subsequent fumonisin contamination in preharvest and stored maize in Benin, West Africa. Int J Food Microbiol 99:173–183

    Google Scholar 

  • FAO (2002) FAOSTAT database. Food and Agricultural Organisation, Roma, Italy

    Google Scholar 

  • Farhangi B, Alizadeh AM, Khodayari H, Khodayari S, Dehghan MJ, Khori V, Heidarzadeh A, Khaniki M, Sadeghiezadeh M, Najafi F (2015) Protective effects of dendrosomal curcumin on an animal metastatic breast tumor. Eur J Pharmacol 758:188–196. https://doi.org/10.1016/j.ejphar.2015.03.076

    Google Scholar 

  • Fathi SM, El-Husseini TM, Abu-Zinada AH (1975) Seasonal variation of soil microflora and their activities in Riyad region. II. Fungi. Bull Fac Sci, Riyad Univ 7:17–30

    Google Scholar 

  • Felixtina EJ (1988) Seed-borne fungi of sesame (Sesamum indicum L) in Sierra Leone and their potential aflatoxin/mycotoxin production. Mycopathologia 104:123–127

    Google Scholar 

  • Feron G, Waché Y (2006) Microbial biotechnology of food flavor production. In: Paliyath G, Pometto A, Levin R, Shetty K (eds) Food biotechnology. CRC Press Taylor and Franc, New York, pp 407–442

    Google Scholar 

  • Feron G, Bonnarme P, Durand A (1996) Prospects for the microbial production of food flavours. Trends Food Sci Technol 7:285–293. https://doi.org/10.1016/0924-2244(96)10032-7

    Google Scholar 

  • Fincher F (1963) Seasonal fluctuation of fungi in randan wood. Trans Br Mycol Soc 46(2):298

    Google Scholar 

  • Fisher NL, Marasas WFO, Toussoum TA (1983) Taxonomic important of microconidial chains in Fusarium section Liseola and effects of water potential on their generation. Mycologia 75:693–698

    Google Scholar 

  • Foster RC (1986) The ultrastructure of rhizoplane and rhizosphere. Annu Rev Phytopathol 24:211–234

    Google Scholar 

  • Fox EM, Howlett B (2008) Secondary metabolism: regulation and role in fungal biology. Curr Opin Microbiol 11:481–487

    Google Scholar 

  • Frandsen RJN, Rasmussen SA, Knudsen PB, Uhlig S, Petersen D, Lysøe E, Gotfredsen CH, Giese H, Larsen TO (2016) Black perithecial pigmentation in Fusarium species is due to the accumulation of 5-deoxybostrycoidin-based melanin. Sci Rep 6:26206. https://doi.org/10.1038/srep26206

    Google Scholar 

  • Frey D, Oldfield RJ, Bridger RC (1979) A colour Atlas of pathogenic fungi. Wolfe Med. Pub. Ltd, Michigan, London, p 168

    Google Scholar 

  • Fu Y, Gao R, Cao Y, Guo M, Wei Z, Zhou E, Li Y, Yao M, Yang Z, Zhang N (2014) Curcumin attenuates inflammatory responses by suppressing TLR4-mediated NF-kB signaling pathway in lipopolysaccharide-induced mastitis in mice. Int Immunopharmacol 20:54–58. https://doi.org/10.1016/j.intimp.2014.01.024

    Google Scholar 

  • Furusawa M, Hashimoto T, Noma Y, Asakawa Y (2005) Biotransformation of citrus aromatics nootkatone and valencene by microorganisms. Chem Pharm Bull 53:1423–1429. https://doi.org/10.1248/cpb.53.1423

    Google Scholar 

  • Gams W, Domsch KH (1969) The spatial and seasonal distribution of microscopic fungi in arable soils. Trans Br Mycol Soc 52:301–308

    Google Scholar 

  • Gams W, O’Donnell K, Schroers HJ, Christensen M (1998) Generic classification of some more hyphomycetes with solitary conidia borne on phialides. Can J Bot 76:1570–1583

    Google Scholar 

  • Gams W, Klamer M, O’Donnell K (1999) Fusarium miscanthi sp. nov. from Miscathus litter. Mycologia 91:263–268

    Google Scholar 

  • Geiser DM, Juba JH, Wang B, Jeffers SN (2001) Fusarium hostae sp. nov., a relative of F. redolans with a Gibberella teleomorph. Mycologia 93:670–678

    Google Scholar 

  • Gerlach W, Nirenberg H (1982) The genus Fusarium-A pictorial atlas. Mitteilungen aus der Biologischen Bundesanstalt Fur Land- und Forstwirtschaft (Berlin-Dahlem) 209:1–405

    Google Scholar 

  • Gessler NN, Egorova AS, Belozerskaya TA (2013) Fungal anthraquinones. Appl Biochem Microbiol 49:85–99. https://doi.org/10.1134/s000368381302004x

    Google Scholar 

  • Gherbawy Y, Maghraby T, Yassmin S (2006) Seasonal variation of Fusarium species in wheat fields in Upper Egypt. Phytopathol Plant Protect 39(5):365–377

    Google Scholar 

  • Gilbert J, Tekauz A, Woods SM (1997) Effect of storage on viability of Fusarium head blight affected spring wheat seed. Plant Dis 81:159–162

    Google Scholar 

  • Gower EW, Keay LJ, Oechsler RA, Iovieno A, Alfonso EC et al (2010) Trends in fungal keratitis in the United States, 2001 to 2007. Ophthalmology 117:2263–2267

    Google Scholar 

  • Grabarczyk M (2012) Fungal strains as catalysts for the biotransformation of halolactones by hydrolytic dehalogenation with the dimethylcyclohexane system. Molecules 17:9741–9753. https://doi.org/10.3390/molecules17089741

    Google Scholar 

  • Graham HD (1980) The safety of foods. AVI Publishing Company, Inc, Westport, CT

    Google Scholar 

  • Gregory PH (1973) Microbiology of the atmosphere. Leonard Hill, Aylsbury, London

    Google Scholar 

  • Guarro J (2013) Fusariosis, a complex infection caused by a high diversity of fungal species refractory to treatment. Eur J Clin Microbiol Infect Dis 32:1491–1500. https://doi.org/10.1007/s10096-013-1924-7

    Google Scholar 

  • Gupta A, Verma JP (2015) Sustainable bio-ethanol production from agroresidues: a review. Renew Sust Energ Rev 41:550–567. https://doi.org/10.1016/j.rser.2014.08.032

    Google Scholar 

  • Hagedorn S, Kaphammer B (1994) Microbial biocatalysis in the generation of flavor and fragrance chemicals. Annu Rev Microbiol 48:773–780. https://doi.org/10.1146/annurev.mi.48.100194.004013

    Google Scholar 

  • Hama S, Tamalampudi S, Suzuki Y, Yoshida A, Kufuda H, Kondo A (2008) Preparation and comparative characterization of immobilized Aspergillus oryzae expressing Fusarium heterosporum lipase for enzymatic biodiesel production. Appl Microbiol Biotechnol 81:637–645. https://doi.org/10.1007/s00253-008-1689-6

    Google Scholar 

  • Hanson JR (2008) The chemistry of fungi. The Royal Society of Chemistry, Cambridge, pp 1–114

    Google Scholar 

  • Harish BS, Ramaiah MJ, Uppulur KB (2015) Bioengineering strategies on catalysis for the effective production of renewable and sustainable energy. Renew Sust Energ Rev 51:533–547. https://doi.org/10.1016/j.rser.2015.06.030

    Google Scholar 

  • Hasan HAH (2002) Gibberellin and auxin production by plant root-fungi and their biosynthesis under salinity-calcium interaction. Rostlinna v Roba 48(3):101–106

    Google Scholar 

  • Hamilton MA, Knorr MS, Cajori RA (1953) Experimental studies of an antibiotic derived from Fusarium bostrycoides. Antibiotics and chemotherapy 3:853

    Google Scholar 

  • Hering O, Nireberg HI (1995) Differentiation of Fusarium sambucinum Fuckel sensu lato and related species by RAPD PCR. Mycopathologia 129:159–164

    Google Scholar 

  • Higgy AH, Abd-Elrazik AA, Rushdi MH (1978) Occurrence of pokkah boeng disease of sugarcane in ARE. Plant Pathol 1:473–481

    Google Scholar 

  • de Hoog GS, Gauarro J, Gene J, Figueras MJ (2000) Atlas of clinical fungi, 2nd edn. Universitat Rovira I Virgili, Reus

    Google Scholar 

  • Huang Z, Yang R, Guo Z, She Z, Lin Y (2010) New anthraquinone derivative produced by cultivation of mangrove endophytic fungus Fusarium sp. ZZF60 from the South China Sea. Chin J Appl Chem 27:394–395

    Google Scholar 

  • Hussein FN, Abd-Elrazik A, Darweish FA, Rushdi MH (1977) Survey of storage diseases of onions and their incidents in Upper Egypt. J Phytopathol 9:15–21

    Google Scholar 

  • Husson F, Couturier A, Kermasha S, Belin JM (1998a) Induction and localization of a lipoxygenase from Fusarium proliferatum. J Mol Catal B Enzym 5:159–163. https://doi.org/10.1016/S1381-1177(98)00026-5

    Google Scholar 

  • Husson F, Pagot Y, Kermasha S, Belin JM (1998b) Fusarium proliferatum: induction and intracellular location of a lipoxygenase. Enzym Microb Technol 23:42–48. https://doi.org/10.1016/S0141-0229(98)00009-X

    Google Scholar 

  • Ibrahim SRM, Elkhayat ES, Mohamed GA, Fat’hi SM, Ross SA (2016a) Fusarithioamide A, a new antimicrobial and cytotoxic benzamide derivative from the endophytic fungus Fusarium chlamydosporium. Biochem Biophys Res Commun 479:211–216. https://doi.org/10.1016/j.bbrc.2016.09.041

    Google Scholar 

  • Ibrahim SRM, Abdallah HM, Mohamed GA, Ross SA (2016b) Integracides H-J: new tetracyclic triterpenoids from the endophytic fungus Fusarium sp. Fitoterapia 112:161–167. https://doi.org/10.1016/j.fitote.2016.06.002

    Google Scholar 

  • Ibrahim SRM, Mohamed GA, Ross AS (2016c) Integracides F and G:new tetracyclic triterpenoids from the endophytic fungus Fusarium sp. Phytochem Lett 15:125–130. https://doi.org/10.1016/j.phytol.2015.12.010

    Google Scholar 

  • Ilgen P, Maier F, Sch¨afer W (2008) Trichothecenes and lipases are host-induced and secreted virulence factors of Fusarium graminearum. Cereal Res Commun 36:421–428

    Google Scholar 

  • Ismail MA, Abdel-Hafez SII, Moharram AM (2002) Aeromycobiota of western desert of Egypt. Asian J Sci Technol 3(1):1–9

    Google Scholar 

  • Ismail MA, Taligoola HK, Ssebukyu EK (2003) Mycobiota associated with maize grains in Uganda with special reference to aflatoxigenic Aspergilli. J Trop Microbiol 2:17–26

    Google Scholar 

  • Ismail MA, Abdel-Hafez SII, Nemmat AH, Nivien AN (2009) Seasonal fluctuation of Fusarium species in cultivated soil, with a new record species to Egypt. Assiut Univ J Bot, The First International Conference of Biological Sciences, Spec. Publ. No 1:12–128

    Google Scholar 

  • Jackson M, Andersen C, Beier L, Friis EP, Toscano MDGP et al (2013) Cleaning compositions comprising amylase variants reference to a sequence listing. France EP2540825A2

    Google Scholar 

  • Jadhav DD, Patil HS, Chaya PS, Thulasiram HV (2016) Fungal mediated kinetic resolution of racemic acetates to (R)-alcohols using Fusarium proliferatum. Tetrahedron Lett 57:4563–4567. https://doi.org/10.1016/j.tetlet.2016.08.084

    Google Scholar 

  • Kasprowicz MJ, Gorczyca A, Frandsen RJ (2013) The effect of nanosilver on pigments production by Fusarium culmorum (W.G.Sm) Sacc. Pol J Microbiol 62:365–372

    Google Scholar 

  • Katznelson H, Lochhead AG, Timonin MI (1948) Soil microorganisms and rhizosphere. Bot Rev 14:543–587

    Google Scholar 

  • Keller NP, Turner G, Bennett J (2005) Fungal secondary metabolism from biochemistry to genomics. Nat Rev Microbiol 3:937–947. https://doi.org/10.1038/nrmicro1286

    Google Scholar 

  • Khalifa MMA (1997) Studies on root-rot and wilt diseases of sesame (Sesamum indicum L). M. Sc. Thesis, Faculty of Agriculture, Zagazig University, Egypt, p 158

    Google Scholar 

  • Khoa LV, Hatai K, Aoki T (2004) Fusarium incarnatum isolated from black tiger shrimp, Penaeus monodon Fabricius, with black gill disease cultured in Vietnam. J Fish Dis 27:507–515. https://doi.org/10.1111/j.1365-2761.2004.00562.x

    Google Scholar 

  • Kimura Y, Takashi H, Nakajima H (1981) Isolation, Identification and Biological Activities of 8-O-Methyljavanicin Produced by Fusarium solani. Agric Biol Chem 45(11):2653–2654

    Google Scholar 

  • Kirk O, Borchert TV, Fuglsang CC (2002) Industrial enzyme applications. Curr Opin Biotechnol 13:345–351. https://doi.org/10.1016/s0958-1669(02)00328-2

    Google Scholar 

  • Klittich CJR, Leslie JF, Nelson PE, Marasas WFO (1997) Fusarium thapsinum (Gibberella thapsina): a new species in section Liseola from sorghum. Mycologia 89:643–652

    Google Scholar 

  • Koda R, Numata T, Hama S, Tamalampudi S, Nakashima K, Tanaka T, Ogino C, Fukuda H, Kondo A (2010) Ethanolysis of rapeseed oil to produce biodiesel fuel catalyzed by Fusarium heterosporum lipase expressing fungus immobilized. J Mol Catal B Enzym 66:101–104. https://doi.org/10.1016/j.molcatb.2010.04.001

    Google Scholar 

  • Kossou DK, Aho N (1993) Stockage et conservation des grains alimentaires tropicaux: principes et pratiques. Les Editions du Flamboyant, Cotonou, Benin, p 125

    Google Scholar 

  • Krings U, Berger RG (1998) Biotechnological production of flavours and fragrances. Appl Microbiol Biotechnol 49:1–8. https://doi.org/10.1007/s002530051129

    Google Scholar 

  • Kundu A, Saha S, Walia S, Dutta TK (2016) Anti-nemic secondary metabolites produced by Fusarium oxysporum f.sp.ciceris. J Asia Pac Entomol 19:631–636. https://doi.org/10.1016/j.aspen.2016.06.003

    Google Scholar 

  • Kurobane I, Zaita N, Fukuda A (1986) New metabolites of Fusarium martii related to dihydrofusarubin. J Antibiot 39:205–214. https://doi.org/10.7164/antibiotics.39.205

    Google Scholar 

  • Lacey J (1975) Air-borne spores in pastures. Trans Br Mycol Soc 2:265–281

    Google Scholar 

  • Lale GJ, Gadre RV (2016) Production of bikaverin by a Fusarium fujikuroi mutant in submerged cultures. AMB Express 6:34. https://doi.org/10.1186/s13568-016-0205-0

    Google Scholar 

  • Lant NJ, Erlandsen L, Hansen CV, Vind J, Svendsen A, Sonksen CP (2013) Compositions and methods for surface treatment with lipases. France WO 2013116261A2

    Google Scholar 

  • Lennartsson PR, Erlandsson P, Taherzadeh MJ (2014) Integration of the first and second generation bioethanol processes and the importance of by-products. Bioresour Technol 165:3–8. https://doi.org/10.1016/j.biortech.2014.01.127

    Google Scholar 

  • Leslie JF (2001) Population genetics level problems in the Gibberella fujikuroi species complex. Pages 113-121 in: Fusarium: Paul E. Nelson Memorial Symposium. In: Summerell BA, Leslie JF, Backhouse D, Bryden WL, Burgess LW (eds) . American Phytopathological Society, St. Paul, MN

    Google Scholar 

  • Leslie JF, Summerell BA (2006) The Fusarium laboratory manual. Blackwell Publishing, Ames, Iowa

    Google Scholar 

  • Li P, Luo H, Meng J, Sun W, Wang X, Lu S, Peng Y, Zhou L (2014) Effects of oligosaccharides from endophytic fusarium oxysporum Dzf17 on activities of defense-related enzymes in dioscorea zingiberensis suspension cell and seedling cultures. Electron J Biotechnol 17:156–161

    Google Scholar 

  • Lighthart B, Frisch A (1976) Estimate of viable airborne microbes downwind from a point source. Appl Environ Microbiol 31:700–701

    Google Scholar 

  • Logrieco A, Peterson SW, Bottalico A (1995a) Phylogenetic relationship within Fusarium sambucinum Fuckel sensu lato determined from ribosomal RNA sequences. Mycopathologia 129:152–158

    Google Scholar 

  • Lazzaro I, Susca A, Mulè G, Ritieni A, Ferracane R, Marocco A, Battilani P (2012) Effects of temperature and water activity on FUM2 and FUM21 gene expression and fumonisin B production in Fusarium verticillioides. European Journal of Plant Pathology http://dx.doi.org/10.1007/s10658-012-0045-y

  • Lopes FC, Tichota DM, Pereira JQ, Segalin J, Rios AO, Brandelli A (2013) Pigment production by filamentous fungi on agro-industrial byproducts: an eco-friendly alternative. Appl Biochem Biotechnol 171:616–625. https://doi.org/10.1007/s12010-013-0392-y

    Google Scholar 

  • Logrieco A, Moretti A, Ritieni A, Bottalico A, Corda P (1995b) Occurrence and toxigenicity of Fusarium proliferatum from preharvest maize ear rot, and associated mycotoxins, in Italy. Plant Disease 79:727–731

    Google Scholar 

  • Maghazy SMN (1979) Studies on keratinolytic fungi in Egyptian soil. M. Sc. Thesis. Bot. Dept., Faculty of Science, Assiut University

    Google Scholar 

  • Mahapatra S, Banerjee D (2012) Structural elucidation and bioactivity of a novel exopolysaccharide from endophytic Fusarium solani SD5. Carbohydr Polym 90:683–689

    Google Scholar 

  • Mahapatra S, Banerjee D (2013a) Fungal exopolysaccharide: production, composition and applications. Microbiol Insights 6:1–16

    Google Scholar 

  • Mahapatra S, Banerjee D (2013b) Evaluation of in vitro antioxidant potency of exopolysaccharide from endophytic Fusarium solani SD5. Int J Biol Macromol 53:62–66

    Google Scholar 

  • Maheshwari RK, Singh AK, Gaddipati J, Srimal RC (2006) Multiple biological activities of curcumin: a short review. Life Sci 78:2081–2087. https://doi.org/10.1016/j.lfs.2005.12.007

    Google Scholar 

  • Maitan-Alfenas GP, Visser EM, Guimarães VM (2015) Enzymatic hydrolysis of lignocellulosic biomass: converting food waste in valuable products. Curr Opin Food Sci 1:44–49. https://doi.org/10.1016/j.cofs.2014.10.001

    Google Scholar 

  • Mäkelä MR, Donofrio N, de Vries RP (2014) Plant biomass degradation by fungi. Fungal Genet Biol 72:2–9. https://doi.org/10.1016/j.fgb.2014.08.010

    Google Scholar 

  • Makkonen J, Jussila J, Koistinen L, Paaver T, Hurt M, Kokko H (2013) Fusarium avenaceum causes burn spot disease syndrome in noble crayfish (Astacus astacus). J Invertebr Pathol 113:184–190. https://doi.org/10.1016/j.jip.2013.03.008

    Google Scholar 

  • Mandeel Q, Baker R (1991) Mechanisms involved in biological control of Fusarium wilt of cucumber with strains of nonpathogenic Fusarium oxysporum. Phytopathology 81(4):462–469

    Google Scholar 

  • Mapari SAS, Nielsen KF, Larsen TO, Frisvad JC, Meyer AS, Thrane U (2005) Exploring fungal biodiversity for the production of water soluble pigments as potential natural food colorants. Curr Opin Biotechnol 16:231–238. https://doi.org/10.1016/j.copbio.2005.03.004

    Google Scholar 

  • Mapari SAS, Thrane U, Meyer AS (2010) Fungal polyketide azaphilone pigments as future nature food colorants? Trends Biotechnol 28:300–307. https://doi.org/10.1016/j.tibtech.2010.03.004

    Google Scholar 

  • Marasas WFO (2001) Discovery and occurrence of the fumonisins: a historical perspective. Environ Health Perspect 109:239–243

    Google Scholar 

  • Marasas WFO, Rheeder JP, Lamprecht SC, Zeller KA, Leslie JF (2001) Fusarium anadiyazi sp. nov., a new species from sorghum. Mycologia 93:1203–1210

    Google Scholar 

  • Maróstica MR, Pastore GM (2007) Production of R-(+)-α-terpineol by the biotransformation of limonene from orange essential oil, using cassava waste water as medium. Food Chem 101:345–350. https://doi.org/10.1016/j.foodchem.2005.12.056

    Google Scholar 

  • Martins N, Roriz CL, Morales P, Barros L, Ferreira ICFR (2016) Food colorants: challenges, opportunities and current desires of agroindustries to ensure consumer expectation and regulatory practices. Trends Food Sci Technol 52:1–15. https://doi.org/10.1016/j.tifs.2016.03.009

    Google Scholar 

  • Maude RB (1996) Seed-borne diseases and their control. CAB International, Cambridge, p 280

    Google Scholar 

  • Mazen MB, Shaban GM (1983) Air-borne fungi of wheat field in Egypt. Qatar Univ Sci Bull 3:131–139

    Google Scholar 

  • Mazen MB, Moubasher AH, Abdel-Hafez AII (1982) Studies on the genus Fusarium in Egypt. IV. Seasonal fluctuations of air-borne fungi with special reference to Fusarium. Bull Fac Sci, Assiut Univ 11(1):95–103

    Google Scholar 

  • Mazen MB, Moubasher AH, Abdel-Hafez AII (1991) Ecological studies on the genus Fusarium in Egyptian soils. Bull Fac Sci, Assiut Univ 20(1-D):73–87

    Google Scholar 

  • Medentsev AG, Arinbasarova AY, Akimenko VK (2005) Biosynthesis of naphthoquinone pigments by fungi of the genus Fusarium. Appl Biochem Microbiol 41:503–507. https://doi.org/10.1007/s10438-005-0091-8

    Google Scholar 

  • Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals and biorefinery concept. Prog Energy Combust Sci 38:522–550. https://doi.org/10.1016/j.pecs.2012.02.002

    Google Scholar 

  • Misiek M, Hoffmeister D (2007) Fungal genetics, genomics, and secondary metabolites in pharmaceutical sciences. Planta Med 73:103–115. https://doi.org/10.1016/j.fgb.2010.04.004

    Google Scholar 

  • Mohamed MS, Sellam MA, Abd-Alrazik A, Rushdi MH (1981) Effect of root exudates of different plants of certain crop rotations on the incitants of tomato damping-off and Fusarium basal rot of onion. Egypt J Phytopathol 13(1–2):41–50

    Google Scholar 

  • Mohamed MS, Sellam MA, Abd-Elrazik A, Rushdi MH (1982) Effect of crop rotation on tomato damping-off and onion basal rot as well on the populations of their mycopathogens and Bacillus subtilis in soil. Anzeiger Schadlingskde, Pflanzenschutz, Umweltschutz 55:181–184

    Google Scholar 

  • Molina G, Pessôa MG, Pimentel MR, Pelissari FM, Bicas JL, Pastore GM (2014) Production of natural flavor compounds using monoterpenes as substrates. In: Hu J (ed) New developments in terpene research, 1ed edn. Nova Publishers, New York, pp 1–24

    Google Scholar 

  • Molina G, Bution ML, Bicas JL, Dolder MAH, Pastore GM (2015) Comparative study of the bioconversion process using R-(+)- and S-(–)-limonene as substrates for Fusarium oxysporum 152B. Food Chem 174:606–613. https://doi.org/10.1016/j.foodchem.2014.11.059

    Google Scholar 

  • Morsy KMM (2005) Induced resistance against damping-off, root rot and wilt diseases of lentil. Egyptian Journal of Phytopathology 33:53–63

    Google Scholar 

  • Moubasher AH (1993) Soil fungi of Qatar and other Arab countries. The Scientific and Applied Research Center, University of Qatar, Doha, Qatar

    Google Scholar 

  • Moubasher AH, Abdel-Hafez SI (1978a) Study on the mycoflora of Egyptian soils. Mycopathologia 63(1):3–10

    Google Scholar 

  • Moubasher AH, Abdel-Hafez SI (1978b) Further study on seasonal fluctuations of Egyptian soil fungi. Mycopathologia 63(1):11–19

    Google Scholar 

  • Moubasher AH, El-Dohlob SM (1970) Seasonal fluctuation of Egyptian soil fungi. Trans Br Mycol Soc 54:45–51

    Google Scholar 

  • Moubasher AH, Moustafa AF (1970) A survey of Egyptian soil fungi with special reference to Aspergillus, Penicillium and Penicillium related genera. Trans Br Mycol Soc 54(1):35–44

    Google Scholar 

  • Moubasher AH, Moustafa AF (1974) Air-borne fungi at Assiut. Egypt J Bot 17:135–149

    Google Scholar 

  • Moubasher AH, Elnaghy MA, Abdel-Hafez SII (1972) Studies on the fungus flora of three grains in Egypt. Mycopathol Mycol Appl 47(3):261–274

    Google Scholar 

  • Moubasher AH, El-Hissy FT, Abdel-Hafez SII, Hassan SKM (1979) The mycoflora of peanuts in Egypt. Mycopathologia 68(1):39–46

    Google Scholar 

  • Moubasher AH, Abdel-Fattah HM, Swelium MA (1981) Studies on air-borne fungi at Qena. I Seasonal fluctuations. Z Allg Mikrobiol 21(3):247–253

    Google Scholar 

  • Moubasher AH, Abdel-Fattah HM, Swelium MA (1982) Studies on air-borne fungi at Qena. IV Effect of wind velocity on total counts. Mycopathologia 80:39–42

    Google Scholar 

  • Moubasher AH, Mazen MB, Abdel-Hafez AII (1984) Studies on the genus Fusarium in Egypt in rhizoplane of five plants. Mycopathologia 85(3):161–165

    Google Scholar 

  • Moubasher AH, Abdel-Hafez SI, El-Maghraby OMO (1988) Seasonal fluctuation soil of Wadi Bir-El-Ain in the eastern desert of Egypt. Nat Monspel Ser Bot 9(52):57–70

    Google Scholar 

  • Moubasher AH, Abdel-Hafez SII, Bagy MMK, Abdel-Satar MA (1990) Halophilic and halotolerant fungi in cultivated, desert and salt marsh soils from Egypt. Mycologica 2:65–81

    Google Scholar 

  • Müller M, Dirlam K,Wenk HH, Berger RG, Krings U, Kaspera R (2005) Method for the production of flavor-active terpenes. Germany WO 2005078110:A1

    Google Scholar 

  • Munkvold GP, Desjardins AE (1997) Fumonisins in maize. Can we reduce their occurrence? Plant Dis 81:556–564

    Google Scholar 

  • Nafady NA (2008) Ecological, physiological and taxonomical studies on the genus Fusarium in Egypt. MSc thesis, Faculty of Science, Assiut University, Egypt

    Google Scholar 

  • Nagia FA, EL-Mohamedy RSR (2007) Dyeing of wool with natural anthraquinone dyes from Fusarium oxysporum. Dyes Pigments 75:550–555. https://doi.org/10.1016/j.dyepig.2006.07.002

    Google Scholar 

  • Nash SN, Snyder WC (1962) Quantitative estimations by plate counts of propagules of the bean rot Fusarium in field soils. Phytopathology 52:567–572

    Google Scholar 

  • Neergaard P (1977) In: Nelson PE, Toussoun TA (eds) Seed pathology. Macmillan, London

    Google Scholar 

  • Nelson PE, Toussoum TA, Marasas WFO (1983) Fusarium species an illustrated manual for identification. The Pennsylvania State University Press, London

    Google Scholar 

  • Nelson PE, Desjardins AE, Plattner RD (1993) Fumonisins, mycotoxins produced by Fusarium species: biology, chemistry, and significance. Annu Rev Phytopathol 31:233–252. https://doi.org/10.1146/annurev.py.31.090193.001313

    Google Scholar 

  • Nielsen RI, Aaslyng DA, Jensen GW, Schneider P (1994) Endoprotease from Fusarium oxysporum DSM 2672 for use in detergents. USA US5288627A

    Google Scholar 

  • Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energy Combust Sci 37:52–68. https://doi.org/10.1016/j.pecs.2010.01.003

    Google Scholar 

  • Nirenberg HI (1976) Untersuchungen uber die morphologische und biologische Differenzierung in der Fusarium Sektion Liseola. Mitt Biol Bund Land-Forst (Berlin-Dahlem) 169:1–117

    Google Scholar 

  • Nirenberg HI, O’Donnell K (1998) New Fusarium species and combinations within the Gibberella fujikuroi species complex. Mycologia 90:434–458

    Google Scholar 

  • Nirmaladevi D, Venkataramana M, Chandranayaka S, Ramesha A, Jameel NM, Srinivas C (2014) Neuroprotective effects of bikaverin on H2O2-induced oxidative stress mediated neuronal damage in SH-SY5Y cell line. Cell Mol Neurobiol 34:973–985. https://doi.org/10.1007/s10571-014-0073-6

    Google Scholar 

  • O’Donnell K, Kistler HC, Cigelnik E, Ploetz RC (1998) Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. P roc Natl Acad Sci USA 95:2044–2049

    Google Scholar 

  • O’Donnell K, Nirenberg HI, Aoki T, Cigelink E (2000) A multigene philology of the Gibberella fujikuroi species complex: detection of additional phylogenetically distinct species. Mycoscience 41:61–78

    Google Scholar 

  • Olajuyigbe FM, Nlekerem CM, Ogunyewo OA (2016) Production and characterization of highly thermostable β-glucosidase during the biodegradation of methyl cellulose by Fusarium oxysporum. Biochem Res Int 2016:1–8. https://doi.org/10.1155/2016/3978124

    Google Scholar 

  • Oliveira BH, Coradi GV, Attili-Angelis D, Scauri C, Luques AHPG, Barbosa AM, Dekker RFH, Neto PO, Lima VMG (2013) Comparison of lipase production on crambe oil and meal by Fusarium sp. (Gibberella fujikuroi complex). Eur J Lipid Sci Technol 115:1413–1425. https://doi.org/10.1002/ejlt.201300087

    Google Scholar 

  • Omar AAW, Abdul Wahid FM, Amal MM (1996) Fungal population in the atmosphere of Ismailia City. Aerobiologia 12:249–255

    Google Scholar 

  • Osama AM (2007) Integrated control of tomato wilts disease caused by Fusarium oxysporum f. sp. lycopersici. Thesis. Faculty of Agriculture, Assiut, University

    Google Scholar 

  • Palmero D, Iglesias C, de Cara M, Lomas T, Santos M, Tello JC (2009) Species of Fusarium isolated from river and sea water of southeastern spain and pathogenicity on four plant species. Plant Dis 93:377–385. https://doi.org/10.1094/PDIS-93-4-0377

    Google Scholar 

  • Panagiotou G, Kekos D, Macris BJ, Christakopoulos P (2003) Production of cellulolytic and xylanolytic enzymes by Fusarium oxysporum grown on corn stover in solid state fermentation. Ind Crop Prod 18:37–45. https://doi.org/10.1016/S0926-6690(03)00018-9

    Google Scholar 

  • Panagiotou G, Christakopoulos P, Olsson L (2005) Simultaneous saccharification and fermentation of cellulose by Fusarium oxysporum F3-growth characteristics and metabolite profiling. Enzym Microb Technol 36:693–699. https://doi.org/10.1016/j.enzmictec.2004.12.029

    Google Scholar 

  • Panagiotou G, Topakas E, Moukouli M, Christakopoulos P, Olsson L (2011) Studying the ability of Fusarium oxysporum and recombinant Saccharomyces cerevisiae to efficiently cooperate in decomposition and ethanolic fermentation of wheat straw. Biomass Bioenergy 35:3727–3732. https://doi.org/10.1016/j.biombioe.2011.05.005

    Google Scholar 

  • Parisot D, Devys M, Barbier M (1990) Naphthoquinone pigments related to fusarubin from the fungus Fusarium solani (Mart.) Sacc. Microbios 64:31–47

    Google Scholar 

  • Paulova L, Patakova P, Branska B, Rychtera M, Melzoch K (2015) Lignocellulosic ethanol: technology design and its impact on process efficiency. Biotechnol Adv 33:1091–1107. https://doi.org/10.1016/j.biotechadv.2014.12.002

    Google Scholar 

  • Petrova A, Dar’in D, Ivanov A, Moskin L, Ishimatsu R, Nakano K, Imato T, Bulatov A (2016) Determination of curcumin in biologically active supplements and food spices using a mesofluidic platform with fluorescence detection. Talanta 159:300–306. https://doi.org/10.1016/j.talanta.2016.06.046

    Google Scholar 

  • Phelps DC, Nemee S, Baker R, Mansell R (1990) Immunoassay for naphthazarin phytotoxins produced by Fusarium solani. Phytopathology 80:298–302. https://doi.org/10.1094/phyto-80-298

    Google Scholar 

  • Pradeep FS, Pradeep BV (2013) Optimization of pigment and biomass production from Fusarium moniliforme under submerged fermentation conditions. Int J Pharm Pharm Sci 5:526–535

    Google Scholar 

  • Pradeep FS, Shakilabegan M, Palaniswamy M, Pradeep BV (2013) Influence of culture media on growth and pigment production by Fusarium moniliforme KUMBF1201 isolated from paddy field soil. World Appl Sci J 22:70–77

    Google Scholar 

  • Pradeep FS, Palaniswamy M, Ravi S, Thangamani A, Pradeep BV (2015) Larvicidal activity of a novel isoquinoline type pigment from Fusarium moniliforme KUMBF1201 against Aedes aegypti and Anopheles stephensi. Process Biochem 50:1479–1486. https://doi.org/10.1016/j.procbio.2015.05.022

    Google Scholar 

  • Prakash S, Singh G, Soni N, Sharma S (2010) Pathogenicity of Fusarium oxysporum against the larvae of Culex quinquefasciatus (Say) and Anopheles stephensi (Liston) in laboratory. Parasitol Res 107:651–655. https://doi.org/10.1007/s00436-010-1911-1

    Google Scholar 

  • Prazeres JN (2006) Produção e caracterização da lipase alcalina de Fusarium oxysporum. Dissertation, State University of Campinas

    Google Scholar 

  • Prazeres JN, Cruz JAB, Pastore GM (2006) Characterization of alkaline lipase from Fusarium oxysporum and the effect of different surfactants and detergents on the enzyme activity. Braz J Microbiol 37:505–509. https://doi.org/10.1590/S1517-83822006000400019

    Google Scholar 

  • Quadros CP, Duarte MCT, Pastore GM (2011) Biological activities of a mixture of biosurfactants from Bacillus subtilis and alkaline lipase from Fusarium oxysporum. Braz J Microbiol 42:354–361. https://doi.org/10.1590/s1517-83822011000100045

    Google Scholar 

  • Rana KL, Kour D, Yadav AN, Kumar V, Dhaliwal HS (2016a) Biotechnological applications of endophytic microbes associated with barley (Hordeum vulgare L.) growing in Indian Himalayan regions. In: Proceeding of 86th annual session of NASI and symposium on “Science, technology and entrepreneurship for human welfare in The Himalayan Region”, p 80

    Google Scholar 

  • Rana KL, Kour D, Yadav AN, Kumar V, Dhaliwal HS (2016b) Endophytic microbes from wheat: diversity and biotechnological applications for sustainable agriculture. In: Proceeding of 57th Association of Microbiologist of India and International symposium on “Microbes and Biosphere: What’s New What’s Next”, p 453

    Google Scholar 

  • Rana KL, Kour D, Verma P, Yadav AN, Kumar V, Singh DH (2017) Diversity and biotechnological applications of endophytic microbes associated with maize (Zea mays L.) growing in Indian Himalayan regions. In: Proceeding of national conference on advances in food science and technology, p 41

    Google Scholar 

  • Raper KB, Thom C (1949) A manual of Penicillium. Williams and Wilkins, Baltimore

    Google Scholar 

  • Reddy TK (1962) Role of plant cover in distribution of fungi in Nilgiri forest soils. Proc Indian Acad Soc 56B:185–194

    Google Scholar 

  • Refai M, Hassan A, Mamed M (2015) Monograph on the genus Fusarium. https://doi.org/10.13140/RG.2.1.3104.2728

  • Richards M (1956) A census of mould spores in the air over Britain in 1952. Trans Br Mycol Soc 39:431–441

    Google Scholar 

  • Rippon JW (1982) Medical mycology: the pathogenic fungi and the pathogenic actinomycetes. W. B. Saunders Company, Philadelphia

    Google Scholar 

  • Rodriguez-Amaya DB (2016) Natural food pigments and colorants. Curr Opin Food Sci 7:20–26. https://doi.org/10.1016/j.cofs.2015.08.004

    Google Scholar 

  • Rushdi MH, Sellam MA, Abd-Elrazik A, Allam AD, Salem A (1980a) Relationship between root-knot nematode and Fusarium wilt of certain leguminous plants. Plant Pathol 11:25–35

    Google Scholar 

  • Rushdi MH, Sellam MA, Abd-Elrazik A, Allam AD, Salem A (1980b) Histological changes induced by Meloidogyne javanaica and Fusarium species on roots of selected leguminous plants. Egyptian Journal of Phytopathology 12(1–2):43–47

    Google Scholar 

  • Rushdi MH, Sellam MA, Abd-Elrazik A, Allam AD, Salem A (1981) Physiological and biochemical changes in broadbean roots due to infection with Fusarium oxysporum, Meloidogyne javanica and their combination. Assiut J Agric Sci 12(1):81–89

    Google Scholar 

  • Saad SI (1958) Studies in atmospheric pollen grains and spore deposition in relation to weather condition and diurnal variation in the incidence of pollen. Egypt J Bot 1:63–79

    Google Scholar 

  • Sagaram US, Kolomiets M, Shim W (2006) Regulation of fumonisin biosynthesis in Fusarium verticillioides-maize system. Plant Pathol J 22:203–210. https://doi.org/10.5423/ppj.2006.22.3.203

    Google Scholar 

  • Sahab AF, Elewa IS, Mostafa MH, Ziedan EH (2001) Integrated control of wilt and root-rot diseases of sesame in Egypt. Egypt J Appl Sci 16(7):448–462

    Google Scholar 

  • Sahay H, Yadav AN, Singh AK, Singh S, Kaushik R, Saxena AK (2017) Hot springs of Indian Himalayas: potential sources of microbial diversity and thermostable hydrolytic enzymes. 3 Biotech 7:1–11

    Google Scholar 

  • Salehi B, Bayat M, Dezfulian M, Sabokbar A, Tabaraie B (2016) The assessment of anti-tumoral activity of polysaccharide extracted from terrestrial filamentous fungus. Saudi J Biol Sci:0–5

    Google Scholar 

  • Sallam NMA, Abdel-Monaim MF (2012) Influence of some agricultural practices on suppression of lentil wilt disease. Plant Pathol J 11(1):32–37

    Google Scholar 

  • Samuels GJ, Nirenberg HI, Seifert KA (2001) Perithecial species of Fusarium. Pages 1-14 in: Fusarium: Paul E. Nelson memorial symposium. In: Summerell BA, Leslie JF, Backhouse D, Bryden WL, Burgess LW (eds) . American Phytopathological Society, St. Paul, MN

    Google Scholar 

  • Sancho RAS, Pastore GM (2012) Evaluation of the effects of anthocyanins in type 2 diabetes. Food Res Int 46:378–386. https://doi.org/10.1016/j.foodres.2011.11.021

    Google Scholar 

  • Sarris J, Latrasse A (1985) Production of odoriferous gamma lactones by Fusarium poae. Agric Biol Chem 49:3227–3230. https://doi.org/10.1271/bbb1961.49.3227

    Google Scholar 

  • Sasanya JJ, Hall C, Wolf-Hall C (2008) Analysis of deoxynivalenol, masked deoxynivalenol, and Fusarium graminearum pigment in wheat samples, using liquid chromatography–UV–mass spectrometry. J Food Prot 71:1205–1213. https://doi.org/10.4315/0362-028x-71.6.1205

    Google Scholar 

  • Schroth MN, Hancock JG (1981) Disease-suppressive soil and root-colonizing bacteria. Science 216:1376–1381

    Google Scholar 

  • Seddek NH (2007) Fungi associated with some wild plants Thesis, Faculty of Science, Assiut, University

    Google Scholar 

  • Sehgal SC, Dhawan S, Chhiber S, Sharma M, Talwar P (1981) Frequency and significance of fungal isolations from conjunctival sac and their role in ocular infections. Mycopathologia 73:17–19

    Google Scholar 

  • Seifert K (1996) Fuskey, Fusarium interactive key. Agr and Agri-Food Canada, Ottawa

    Google Scholar 

  • Shephard GS, Thiel PG, Stockenstrom S, Sydenham EW (1996) Worldwide survey of fumonisin contamination of corn and corn-based products. J AOAC Int 79:671–687

    Google Scholar 

  • Shihata ZA, Gad El-Hak A (1989) Cowpea wilt and root rot disease in El-Minia, Egypt. Assiut J Agric Sci 20:159–171

    Google Scholar 

  • Shiono Y, Ariefa NR, Anwar C, Matsjeh S, Sappapan R, Murayama T, Koseki T, Kawamura T, Uesugi S, Kimura KI (2016) New metabolites produced by Fusarium solani T-13 isolated from a dead branch. Phytochem Lett 17:232–237. https://doi.org/10.1016/j.phytol.2016.08.003

    Google Scholar 

  • Singh R, Kumar M, Mittal A, Mehta PK (2016) Microbial enzymes: industrial progress in 21st century. 3 Biotech 6:174. https://doi.org/10.1007/s13205-016-0485-8

    Google Scholar 

  • Snyder WC, Hansen HN (1940) The species concept in Fusarium. Am J Bot 27:64–67

    Google Scholar 

  • Snyder WC, Hansen HN (1941) The species concept in Fusarium with reference to section Martiella. Am J Bot 28:738–742

    Google Scholar 

  • Snyder WC, Hansen HN (1945) The species concept in Fusarium with reference to Discolor and other sections. Am J Bot 28:738–742

    Google Scholar 

  • Sondergaard TE, Klitgaard LG, Purup S, Kobayashi H, Giese H, Sørensen JL (2012) Estrogenic effects of fusarielins in human breast cancer cell lines. Toxicol Lett 214:259–262. https://doi.org/10.1016/j.toxlet.2012.09.004

    Google Scholar 

  • Soni H, Rawat HK, Ahirwar S, Kango N (2016) Screening, statistical optimized production and application of β-mannanase from some newly isolated fungi. Eng Life Sci. https://doi.org/10.1002/elsc.201600136

  • Son SW, Kim HY, Choi GJ, Lim HK, Jang KS, Lee SO, Lee S, Sung ND, Kim JC (2008) Bikaverin and fusaric acid from Fusarium oxysporum show antioomycete activity against Phytophthora infestans. J Appl Microbiol 104:692–698

    Google Scholar 

  • Sørensen JL, Sondergaard TE (2014) The effects of different yeast extracts on secondary metabolite production in Fusarium. Int J Food Microbiol 170:55–60. https://doi.org/10.1016/j.ijfoodmicro.2013.10.024

    Google Scholar 

  • Souza PNC, Grigoletto TLB, Moraes LAB, Abreu LM, Guimarães LHS, Santos C, Glavão LR, Cardoso PG (2016) Production and chemical characterization of pigments in filamentous fungi. Microbiology 162:12–22. https://doi.org/10.1099/mic.0.000168

    Google Scholar 

  • Srivastava VB, Mishra RR (1971) Investigation into rhizosphere microflora. I. Succession of microflora of root regions of Oryza sativa L. Microbiol Esp 24(3):193–205

    Google Scholar 

  • Stamatis H, Christakopoulos P, Kekos D, Macris BJ, Kolisis FN (1998) Studies on the synthesis of short-chain geranyl esters catalysed by Fusarium oxysporum esterase in organic solvents. J Mol Catal B Enzym 4:229–236. https://doi.org/10.1016/S1381-1177(98)00003-4

    Google Scholar 

  • Steinberg C, Laurent J, Edel-Hermann V, Barbezant M, Sixt N, Dalle F, Aho S, Bonnin A, Hartemann P, Sautour M (2015) Adaptation of Fusarium oxysporum and F. dimerum to the specific aquatic environment provided by the water systems of hospitals. Water Res 76:53–65. https://doi.org/10.1016/j.watres.2015.02.036

    Google Scholar 

  • Stoilova T, Chavdarov P (2006) Evaluation of lentil germplasm for disease resistance to Fusarium wilt. J Cent Eur Agric 7(1):121–126

    Google Scholar 

  • Stoilova T, Pereira G (1999) Morphological characterization of 120 lentil (Lens culinaris Medic.) accessions. Lentil Exp News Serv 2:7–9

    Google Scholar 

  • Studt L, Wiemann P, Kleigrewe K, Humpf HU, Tudzynski B (2012) Biosynthesis of fusarubins accounts for pigmentation of Fusarium fujikuroi perithecia. Appl Environ Microbiol 78:4468–4480. https://doi.org/10.1128/aem.00823-12

    Google Scholar 

  • Suman A, Verma P, Yadav AN, Saxena AK (2015) Bioprospecting for extracellular hydrolytic enzymes from culturable thermotolerant bacteria isolated from Manikaran thermal springs. Res J Biotechnol 10:33–42

    Google Scholar 

  • Summerell BA, Salleh B, Leslie JF (2003) A utilitarian approach to Fusarium identification. Plant Dis 87(2):117–128

    Google Scholar 

  • Summerell BA, Laurence MH, Liew ECY, Leslie JF (2010) Biogeography and phylogeography of Fusarium: a review. Fungal Divers 44:3–13. https://doi.org/10.1007/s13225-010-0060-2

    Google Scholar 

  • Suprum TP (1963) Seasonal changes in mycoflora of the forest soils in the area of Moscow. Nach Dockl Vyssh Skkoly Biol Nank 3:93–103

    Google Scholar 

  • Suresh PV, Sakhare PZ, Sachindra NM, Halami PM (2014) Extracellular chitin deacetylase production in solid state fermentation by native soil isolates of Penicillium monoverticillium and Fusarium oxysporum. J Food Sci Technol 51(8):1594–1599. https://doi.org/10.1007/s13197-012-0676-1

    Google Scholar 

  • Takemoto K, Kamisuki S, Chia PT, Kuriyama I, Mizushina Y, Sugawara F (2014) Bioactive dihydronaphthoquinone derivatives from Fusarium solani. J Nat Prod 77:1992–1996. https://doi.org/10.1021/np500175j

    Google Scholar 

  • Taligoola HK, Ismail MA, Chebon SK (2004) Mycobiota associated with rice grains marketed in Uganda. J Biol Sci 4(1):271–278

    Google Scholar 

  • Tatum JH, Baker RA, Berry RE (1985) Naphthoquinones produced by Fusarium oxysporum isolated from citrus. Phytochemistry 24:457–459. https://doi.org/10.1016/s0031-9422(00)80746-3

    Google Scholar 

  • Tatum JH, Baker RA, Berry RE (1987) Naphthoquinones and derivatives from Fusarium. Phytochemistry 26:795–798. https://doi.org/10.1016/s0031-9422(00)84789-5

    Google Scholar 

  • Thadathil N, Kuttappan AKP, Vallabaipatel E, Kandasamy M, Velappan SP (2014) Statistical optimization of solid state fermentation conditions for the enhanced production of thermoactive chitinases by mesophilic soil fungi using response surface methodology and their application in the reclamation of shrimp processing by-products. Ann Microbiol 64:671–681. https://doi.org/10.1007/s13213-013-0702-1

    Google Scholar 

  • Thrane U (2001) Developments in the taxonomy of Fusarium species based on secondary metabolites. In: Summerell BA, Leslie JF, Backhause D, Bryden WL, Burgess LW (eds) Fusarium Paul E. Nelson memorial symposium. APS Press, St. Paul Minnesota, pp 27–49

    Google Scholar 

  • Thrane U, Hansen U (1995) Chemical and physiological characterization of taxa in the Fusarium sambucinum complex. Mycopathologia 129:183–190

    Google Scholar 

  • Thrane U, Adler A, Clasen PE, Galvano F, Langseth W, Lew H, Logrieco A, Nielsen KF, Ritieni A (2004) Diversity in metabolite production by Fusarium langsethiae, Fusarium poae, and Fusarium sporotrichioides. Int J Food Microbiol 95:257–266. https://doi.org/10.1016/j.ijfoodmicro.2003.12.005

    Google Scholar 

  • Treger TR, Visscher DW, Bartlett MS, Smith LW (1985) Diagnosis of pulmonary infection caused by Aspergillus: usefulness of respiratory cultures. J Infect Dis 152:572–576

    Google Scholar 

  • Trisuwan K, Khamthong N, Rukachaisirikul V, Phongpaichit S, Preedanon S, Sakayaroj J (2010) Anthraquinone, cyclopentanone, and naphthoquinone derivatives from the sea fan-derived fungi Fusarium spp. PSU-F14 and PSU-F1135. J Nat Prod 73:1507–1511. https://doi.org/10.1021/np100282k

    Google Scholar 

  • Trisuwan K, Rukachaisirikul V, Borwornwiriyapanc K, Phongpaichit S, Sakayaroj J (2013) Pyrone derivatives from the soil fungus Fusarium solani PSU-RSPG37. Phytochem Lett 6:495–497. https://doi.org/10.1016/j.phytol.2013.06.008

    Google Scholar 

  • Tuli HS, Chaudhary P, Beniwal V, Sharma AK (2015) Microbial pigments as natural color sources: current trends and future perspectives. J Food Sci Technol 52:4669–4678. https://doi.org/10.1007/s13197-014-1601-6

    Google Scholar 

  • Vandamme EJ (2003) Bioflavours and fragrances via fungi and their enzymes. Fungal Divers 13:153–166

    Google Scholar 

  • Velez H, Diaz F (1985) Onychomycosis due to saprophytic fungi. Mycopathologia 91:87–92

    Google Scholar 

  • Velmurugan P, Kamala-Kannan S, Balachandar V, Lakshmanaperumalsamy P, Chae JC, Oh BT (2010) Natural pigment extraction from five filamentous fungi for industrial applications and dyeing of leather. Carbohydr Polym 79:261–268. https://doi.org/10.1016/j.carbpol.2009.07.058

    Google Scholar 

  • Venugopalan A, Srivastava S (2015) Enhanced camptothecin production by ethanol addition in the suspension culture of the endophyte, Fusarium solani. Bioresour Technol 188:251–257

    Google Scholar 

  • Venugopalan A, Potunuru UR, Madhulika AU, Srivastava S (2016) Effect of fermentation parameters, elicitors and precursors on camptothecin production from the endophyte Fusarium solani. Bioresour Technol 213:311–318

    Google Scholar 

  • Venil CK, Zakaria ZA, Ahmad WA (2013) Bacterial pigments and their applications. Process Biochem 48:1065–1079. https://doi.org/10.1016/j.procbio.2013.06.006

    Google Scholar 

  • Vohra M, Manwar J, Manmode R, Padgilwar S, Patil S (2014) Bioethanol production: feedstock and current technologies. J Environ Chem Eng 2:573–584. https://doi.org/10.1016/j.jece.2013.10.013

    Google Scholar 

  • Warcup JH (1957) Studies on the occurrence and activity of fungi in a wheat field soil. Trans Br Mycol Soc 40:237–259

    Google Scholar 

  • Waśkiewicz A, Stępień L (2012) Mycotoxins biosynthesized by plant derived Fusarium isolates. Arh Hig Rada Toksikol 63:437–446. https://doi.org/10.2478/10004-1254-63-2012-2230

    Google Scholar 

  • Wiemann P, Willmann A, Straeten M, Kleigrewe K, Beyer M, Humpf HU, Tudzynski B (2009) Biosynthesis of the red pigment bikaverin in Fusarium fujikuroi: genes, their function and regulation. Mol Microbiol 72:931–946

    Google Scholar 

  • Witkamp M (1960) Seasonal fluctuation of the fungus flora in mull and more of an Oak forest. Meded Inst Toegep Biol Onderz Nat 46:8

    Google Scholar 

  • Wollenweber HW, Reinking OA (1935) Die Fusarien, ihr Beschreibung, Schadwirkung und Bekampfung. Verlag Paul Parey, Berlin, Germany

    Google Scholar 

  • Wu Y, Nian D (2014) Production optimization and molecular structure characterization of a newly isolated novel laccase from Fusarium solani MAS2, an anthracene-degrading fungus. Int Biodeterior Biodegrad 86:382–389. https://doi.org/10.1016/j.ibiod.2013.10.015

    Google Scholar 

  • Xiros C, Christakopoulos P (2009) Enhanced ethanol production from brewer’s spent grain by a Fusarium oxysporum consolidated system. Biotechnol Biofuels 2009:2–4. https://doi.org/10.1186/1754-6834-2-4

    Google Scholar 

  • Xiros C, Topakas E, Katapodis P, Christakopoulos P (2008) Evaluation of Fusarium oxysporum as an enzyme factory for the hydrolysis of brewer’s spent grain with improved biodegradability for ethanol production. Ind Crop Prod 28:213–224. https://doi.org/10.1016/j.indcrop.2008.02.004

    Google Scholar 

  • Xiros C, Katapodis P, Christakopoulos P (2009) Evaluation of Fusarium oxysporum cellulolytic system for an efficient hydrolysis of hydrothermally treated wheat straw. Bioresour Technol 100:5362–5365. https://doi.org/10.1016/j.biortech.2009.05.065

    Google Scholar 

  • Xiros C, Katapodis P, Christakopoulos P (2011) Factors affecting cellulose and hemicellulose hydrolysis of alkali treated brewers spent grain by Fusarium oxysporum enzyme extract. Bioresour Technol 102:1688–1696. https://doi.org/10.1016/j.biortech.2010.09.108

    Google Scholar 

  • Xu J, Wang X, Hu L, Xia J, Wu Z, Xu N, Dai B, Wu B (2015) A novel ionic liquid-tolerant Fusarium oxysporum BN secreting ionic liquid stable cellulase: consolidated bioprocessing of pretreated lignocellulose containing residual ionic liquid. Bioresour Technol 181:18–25. https://doi.org/10.1016/j.biortech.2014.12.080

    Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Kaushik R, Saxena AK (2016) Cold active hydrolytic enzymes production by psychrotrophic Bacilli isolated from three sub-glacial lakes of NW Indian Himalayas. J Basic Microbiol 56:294–307

    Google Scholar 

  • Yang SX, Gao JM, Zhang Q, Laatsch H (2011) Toxic polyketides produced by Fusarium sp., an endophytic fungus isolated from Melia azedarach. Bioorg Med Chem Lett 21:1887–1889. https://doi.org/10.1016/j.bmcl.2010.12.043

    Google Scholar 

  • Yang SX, Gao JM, Laatsch H, Tian JM, Pescitelli G (2012a) Absolute configuration of fusarone, a new azaphilone from the endophytic fungus Fusarium sp. isolated from Melia azedarach, and of related azaphilones. Chirality 24:621–627. https://doi.org/10.1002/chir.22044

    Google Scholar 

  • Yang SX, Wang HP, Gao JM, Zhang Q, Laatsch H, Kuang Y (2012b) Fusaroside, a unique glycolipid from Fusarium sp., an endophytic fungus isolated from Melia azedarach. Org Biomol Chem 10:819–824. https://doi.org/10.1039/c1ob06426f

    Google Scholar 

  • Yang X, Choi HS, Park C, Kim SW (2015) Current states and prospects of organic waste utilization for biorefineries. Renew Sust Energ Rev 49:335–349. https://doi.org/10.1016/j.rser.2015.04.114

    Google Scholar 

  • Yang L, Zhou X-K, Wang L, Shi H-X, Liu X-F, Wang Y-G (2018) Isolation of Endophytic fungi from Thermopsis lanceolata and their antioxidant activity. Acta Medica Mediterr 34:27–31

    Google Scholar 

  • Yen G, Lee C (1996) Antioxidant activity of extracts from molds. J Food Prot 59:1327–1330

    Google Scholar 

  • Youssef YA, Karam El-Din A (1988) Airborne spores of opportunistic fungi in the atmosphere of Cairo, Egypt. I Mould Fungi Grana 27:89–92

    Google Scholar 

  • Yusuf F, Chaubey A, Jamwal U, Parshad R (2013) A new isolate from Fusarium proliferatum (AUF-2) for efficient nitrilase production. Appl Biochem Biotechnol 171:1022–1031. https://doi.org/10.1007/s12010-013-0416-7

    Google Scholar 

  • Zabed H, Sahu JN, Boyce AN, Faruq G (2016) Fuel ethanol production from lignocellulosic biomass: an overview on feedstocks and technological approaches. Renew Sust Energ Rev 66:751–774. https://doi.org/10.1016/j.rser.2016.08.038

    Google Scholar 

  • Zaher AM, Makboul MA, Moharram AM, Tekwani BL, Calderon AI (2015) A new enniatin antibiotic from the endophyte Fusarium tricinctum Corda. J Antibit 68:197–200

    Google Scholar 

  • Zhong JJ, Xiao JH (2009) Secondary metabolites from higher fungi: discovery, bioactivity, and bioproduction. Adv Biochem Eng Biotechnol 113:79–150. https://doi.org/10.1007/10_2008_26

    Google Scholar 

  • Zhu ZY, Liu XC, Fang XN, Sun HQ, Yang XY, Zhang YM (2016) Structural characterization and anti-tumor activity of polysaccharide produced by Hirsutella sinensis. Int J Biol Macromol 82:959–966

    Google Scholar 

  • Ziedan EHE (1993) Studies on Fusarium wilt disease of sesame in Arabic Republic of Egypt. M. Sc. Thesis, Plant Pathology Department, Faculty of Agriculture, Ain-Shams University, Egypt, p 121

    Google Scholar 

  • Ziedan EHE (1998) Integrated control of wilt and root-rot diseases of sesame in A.R.E. Ph.D. Thesis, Faculty of Agriculture, Ain-Shams University, Egypt, p 169

    Google Scholar 

  • Ziedan EH, Mostafa MH, Elewa IS (2012) Effect of bacterial inocula on Fusarium oxysporum f. sp. sesami and their pathological potential on sesame. J Agric Technol 8(2):699–709

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abdel-Azeem, A.M., Abdel-Azeem, M.A., Darwish, A.G., Nafady, N.A., Ibrahim, N.A. (2019). Fusarium: Biodiversity, Ecological Significances, and Industrial Applications. In: Yadav, A., Mishra, S., Singh, S., Gupta, A. (eds) Recent Advancement in White Biotechnology Through Fungi. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-10480-1_6

Download citation

Publish with us

Policies and ethics